Topology Optimization of continuum structures with epsilon-relaxed stress constraints
Guilherme, Carlos Eduardo Marcos; Fonseca, Jun Sérgio Ono
Abstract:
Topology optimization of linear elastic continuum structures is a challenging problem when considering local stress constraints. The reasons are the singular behavior of the constraint with the density design variables, combined with the large number of constraints even for small finite element meshes. This work presents an alternative formulation for the s-relaxation technique, which provides an workaround for the singularity of the stress constraint. It also presents a new global stress constraint formulation. Derivation of the sensitivities for the constraint by the adjoint method is shown. Results for single and multiple load cases show the potential of the new formulation.