Experimental study of the characteristics of the flow in the first rows of tube banks
Abstract:
This paper presents the experimental study of the flow instabilities in the first rows of tube banks. The study is performed using hot wire anemometry technique in an aerodynamic channel as well as flow visualizations in a water channel. In the wind channel three tube banks with square arrangement and pitch to diameter ratios P/D = 1.26, 1.4 and 1.6 were studied. The Reynolds number range for the velocities measurements, computed with the tube diameter and the flow velocity in the narrow gap between tubes was 7 × 104–8 × 104. Continuous and discrete wavelets were applied to decompose the velocity results, thus allowing the analysis of phenomena in time–frequency domain. Visualizations in a water channel complemented the analysis of the hot wire results. For this purpose, dye was injected in the flow in the water channel with a tube bank with P/D = 1.26. The range of the Reynolds number of the experiments was 3 × 104–4 × 104. The main results show the presence of instabilities, generated after the second row of the tube bank, which propagates to the interior of the bank. In the resulting flow, the three orthogonal components are equally significant. The three-dimensional behavior of the flow is responsible for a mass redistribution inside the bank that leads to velocity values not expected for the studied geometry, according to the known literature. The resulting flow process can be interpreted as a secondary flow which is characteristic of tube banks.