Abstract:
As microalgas têm grande importância na aquicultura, pois melhoram a qualidade da
água e ainda constituem uma boa fonte de nutrientes como lipídeos, ácidos graxos,
proteínas e vitaminas. No sistema de bioflocos, a qualidade da água é mantida de
maneira eficiente por bactérias e também por microalgas, que servem como
complemento alimentar para os organismos produzidos. Este trabalho teve por objetivo
geral avaliar a suplementação das microalgas marinhas Nannochloropsis oceanica e
Conticribra weissflogii fornecida em meio de cultivo e concentrada (úmida e seca) na
água de produção e no desempenho do camarão-branco Litopenaeus vannamei,
produzido em sistema BFT. Para isto, foram realizados três experimentos com adição
das microalgas. Os 2 primeiros experimentos se diferenciaram quanto ao tamanho dos
animais (0,014g e 0,70g), mas eram compostos dos mesmos tratamentos (com três
repetições), 1) Controle - sem adição de microalgas, 2) TM – com adição de microalgas
em meio de cultivo; 3) TU – com adição de biomassa úmida de microalga e 4) TS –
com adição de biomassa seca de microalga. No experimento 3, foi adicionada 125 g de
biomassa úmida da microalga N. oceanica aos tratamentos: TBM- bioflocos com
microalgas, TAM- água clara com microalgas e TBFT- bioflocos, TAC- água clara sem
microalgas. Todos com três repetições. Foram monitorados parâmetros de qualidade de
água como temperatura, salinidade, oxigênio, amônia, nitrito, nitrato, fosfato, pH,
alcalinidade e SST. Para os experimentos 2 e 3 foram realizadas análises de lipídeos e
ácidos graxos. Nos experimentos 1 e 2, não houve diferenças significativas nos
parâmetros de qualidade de água. No experimento 3, os níveis de amônia nos
tratamentos com água clara foram maiores do que nos tratamentos com bioflocos,
enquanto o nitrato foi mais elevado nos tratamentos com bioflocos. No experimento 1, o
peso final foi maior nos tratamentos com microalga úmida e controle para a C.
weissflogii, enquanto que não houve diferenças significativas para N. oceanica. No
experimento 2, não houve diferenças significativas no desempenho zootécnico dos
camarões. Já para o experimento 3, o maior peso final foi encontrado nos tratamentos
com adição de microalgas (TBM) e (TAM). No experimento 2 os valores de lipídeos no
músculo do camarão não apresentaram diferenças para as duas microalgas. Os ácidos
graxos C 16:0 e C 18:0 apresentaram maiores valores em TM de N. oceanica, enquanto
que para C. weissflogii, os maiores valores foram encontrados para os ácidos graxos
XVII
poli-insaturados C 20:4 (TU) e C22:6 (TM). No terceiro experimento, os teores de
lipídeos foram maiores no tratamento TBM, diferindo estatisticamente apenas do TAC.
Já para os ácidos graxos, maiores valores foram encontrados em C 16:0 (TAC) e C 18:0
(TAM), C 20:2 e C 22:5 (tratamento controle). As microalgas beneficiaram o
crescimento especialmente de camarões maiores (10 g). Entretanto, o fator que mais
beneficiou não foi o lipídeo, mas provavelmente a proteína presente nas microalgas. O
oferecimento de microalgas na forma de pasta, ou pó, pode ser uma boa estratégia para
a melhora do desempenho zootécnico de L. vannamei, com menos esforço de produção,
já que as microalgas podem ser produzidas na entressafra da produção de camarões e
estocadas para uso posterior.
Microalgae are very important in aquaculture because they improve water quality and
are a source of nutrients such as lipids, fatty acids, proteins and vitamins. In Biofloc
Technology System (BFT), water quality is efficiently maintained by heterotrophic and
nitrifying bacteria and microalgae, which also serve as a food supplement for the
organisms produced. However, microalgae are difficult to maintain in BFT because of
the large amount of suspended material, which decreases light penetration and reduces
photosynthesis. This study aimed to evaluate the effect of supplementation of the
marine microalgae Nannochloropsis oceanica and Conticribra weissflogii, offered as
culture medium and concentrated biomass (wet and dry), on the water quality,
zootechnical indexes and lipid and fatty acid content in the bioflocs and in the shrimp
Litopenaeus vannamei. For this, three experiments were carried out with the addition of
microalgae. The first two experiments, with different shrimp weights (0.014g and
0.70g), were composed of the following treatments (in triplicate): 1) Control - without
addition of microalgae; 2) TM - with microalgae in culture medium; 3) TU - with wet
microalgae biomass and 4) TS - with dry microalgae biomass. In the third experiment,
with 10 g shrimps, 125 g of humid biomass of N. oceanica were added to the treatments
(in triplicate): 1) TBFT - bioflocs; 2) TBM - bioflocs with microalgae; 3) TAC - clear
water and 4) TAM - clear water with microalgae. Temperature, salinity, dissolved
oxygen, total ammonia nitrogen (TAN), nitrite, nitrate, phosphate, pH, alkalinity and
total suspended solids were monitored. For the experiments two and three, analyzes of
lipids and fatty acids were also carried out. In general, the addition of microalgae did
not affect water quality. However, in the third experiment, the levels of TAN were
higher in treatments with clear water, whereas treatments with bioflocs presented higher
concentrations of nitrate. In the first experiment, the final weight of shrimp was higher
in treatments with wet microalgae biomass and control for C. weissflogii, whereas there
were no significant differences for N. oceanica. In the second experiment, there was no
significant difference in shrimp’s zootechnical performance. For experiment three, the
highest final weight was found in the treatments with addition of microalgae (TBM) and
(TAM). In experiment 2, lipid values in shrimp muscle were not affected by the
addition of microalgae. The fatty acids C 16:0 e C 18:0 presented higher values in TM
of N. oceanica, whereas for C. weissflogii, the highest values were found for the
polyunsaturated fatty acids C 20: 4 (TU) and C 22: 6 (TM). In the third experiment,
XIX
lipid levels were higher in TBM treatment, statistically differing only from TAC. As for
fatty acids, higher values were found for C 16: 0 (TAC) and C 18: 0 (TAM), and C 20:
2 and C 22: 5 in the control treatment. Microalgae benefited the growth especially of
larger shrimps (10 g). However, the factor that most influenced the shrimp growth was
not the lipid but probably the protein present in the microalgae. The use of microalgae
in the form of wet or dry biomass may be a good strategy to improve the performance of
L. vannamei with less production effort, since microalgae can be produced in the
intervals of shrimp production cycles and stored for further use.