Show simple item record

dc.contributor.advisor Werhli, Adriano Velasque
dc.contributor.author Silva, Roger Sá da
dc.date.accessioned 2020-03-10T15:47:08Z
dc.date.available 2020-03-10T15:47:08Z
dc.date.issued 2016
dc.identifier.citation SILVA, Roger Sá da. Uma comparação entre classificadores para predição da classe de cor a partir de dados estruturais em proteínas fluorescentes. 2016. 120 f. Dissertação (Mestrado em Engenharia da Computação) – Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Rio Grande, 2016. pt_BR
dc.identifier.uri http://repositorio.furg.br/handle/1/8421
dc.description.abstract Proteínas Fluorescentes são importantes ferramentas em pesquisas de Biologia Molecular e possuem grande valor comercial na produção de peixes transgênicos fluorescentes. De modo geral, a criação de variantes de cor destas proteínas ocorre por alterações estruturais na macromolécula, ocasionadas por mutações na sequência de aminoácidos. Porém, relacionar de forma exata dados estruturais e sequenciais com a definição de cor de emissão de proteínas fluorescentes ainda necessita de mais estudos. Neste contexto, a aplicação do processo de descoberta de conhecimento em bases de dados se apresenta como uma possibilidade de obtenção de conhecimento sobre essa relação da sequência/estrutura e a cor de emissão. Dessa forma, é realizado neste trabalho a comparação entre três classificadores (baseados em Árvore de Decisão, Redes Neurais Artificiais e Máquinas de Vetores de Suporte) com o intuito de investigar a performance deles na predição da classe de cor de proteínas fluorescentes a partir de seus dados estruturais no âmbito do projeto Peixes Transgênicos Fluorescentes. Para tanto, uma ferramenta web é desenvolvida para o armazenamento, organização e preparação dos dados estruturais utilizados no treinamento dos classificadores. Ao final, um processo de comparação quantitativa e qualitativa é realizado sobre métricas de desempenho e capacidades de cada classificador, culminando na escolha do classificador baseado em Árvore de Decisão como o mais adequado na tarefa de predição da classe de cor de proteínas fluorescentes. pt_BR
dc.description.abstract Fluorescent proteins are important tools in molecular biology research and have great commercial value in production of fluorescent transgenic fishes. In general, the creation of color variants of these proteins occurs by structural changes in the macromolecule caused by mutations in amino acid sequence. However, to relate accurately structural and sequence data of fluorescent proteins with its emission color still needs further study. In this context, the application of knowledge discovery in databases process presents a possibility of obtaining knowledge on this relationship of the sequence / structure and emission color. Thus, in this work it is carried out a comparison between classifiers (based on Decision Tree, Artificial Neural Networks and Support Vector Machines) in order to investigate their performance in predicting the class color of fluorescent proteins from their structural data, in the context of Fluorescent Transgenic Fishes project. Therefore, an web tool is designed for the storage, organization and preparation of structural data used in the classifiers training. At the end, a quantitative and qualitative comparison process is carried out on performance metrics and capabilities of each classifier, culminating in the selection of the classifier based on Decision Tree as the most appropriate for the task of predicting the fluorescent proteins color class. pt_BR
dc.language.iso por pt_BR
dc.rights open access pt_BR
dc.subject Bioinformática pt_BR
dc.subject Mineração de dados pt_BR
dc.subject Proteínas Fluorescentes pt_BR
dc.subject Bioinformatics pt_BR
dc.subject Data mining pt_BR
dc.subject Fluorescent proteins pt_BR
dc.title Uma comparação entre classificadores para predição da classe de cor a partir de dados estruturais em proteínas fluorescentes pt_BR
dc.title.alternative A comparison of classifiers for predicting color class from structural data on fluorescent proteins pt_BR
dc.type masterThesis pt_BR


Files in this item

This item appears in the following Collection(s)

:

  • C3 - Mestrado em Engenharia da Computação
  • Show simple item record