Numerical investigation of turbulent forced convective flows over a pair of circular cylinders
Abstract:
The present study presents large eddy simulation (LES) of forced convective heat transfer in transient, two-dimensional, incompressible turbulent flows over a pair of cylinders with two different arrangements: 1) with two circular cylinders in tandem (both cylinders are in line with the streamwise direction of the flow, β = 0º) and 2) two side-by-side circular cylinders (where both cylinders are placed transversally to the streamwise direction of the flow, β = 90º). The dynamic Smagorinsky model is employed for the sub-grid treatment. The simulations are based on the finite volume method solution for the conservation equations of mass, momentum and energy. Both simulations are performed with Reynolds and Prandtl numbers of ReD = 22000 and Pr = 0.71, respectively. The results showed that the transient fluid dynamic and thermal patterns are strongly affected by the configuration of circular cylinders. The kind of arrangement led to a difference of nearly 20 % for time-averaged Nusselt number (NuD).