Abstract:
O objetivo deste trabalho é resolver um problema inverso em Transferência Radiativa,
que consiste na reconstrução de condições de contorno e termo fonte em Óptica Hidrológica.
O problema direto consiste em resolver a Equação de Transferência Radiativa pelo Método
das Ordenadas Discretas (SN ) e o sistema de equações diferenciais ordinárias com coeficientes
constantes resultante é resolvido por diagonalização da matriz de coeficientes. As medidas ra-
diométricas para a inversão foram obtidas sinteticamente de uma fonte e condições de contorno
específicas. O problema inverso foi formulado como um problema de otimização não-linear de
estimativa dos coeficientes de Fourier e da condição de fronteira pela minimização do funcional
de diferenças quadráticas entre dados sintéticos e os dados calculados do modelo direto. Devido
ao mal-condicionamento deste problema inverso precisamos usar a regularização de Tikhonov
com escolha a posteriori do parâmetro de regularização pelo Método de Hansen. Simulações
foram realizadas com diferentes níveis de ruído.
The aim of this work is to solve an inverse problem in Radiative Transfer, which consists
in a reconstruction of boundary conditions and source term in the Hydrologic Optics. The direct
problem is to solve the Radiative Transfer Equation by Discrete Ordinates Method (SN ) and the
system of ordinary differential equations with constant coefficients resultant was solved by di-
agonalization of coefficient matrix. The radiometric measures to the inversion were obtained
synthetically from a specific source and boundary conditions. The inverse problem was formu-
lated as a nonlinear optimization problem of estimate the coefficients of Fourier’s series and the
boundary condition by minimization of quadratic difference functional between synthetic and
computed data obtained from de direct model. Due to the ill-conditioning of this inverse pro-
blem we needed to use the Tikhonov’s regularization with choice a posteriori of regularization
parameter by the Hansen’s Method. The simulations were done using corrupted measures by
different levels of Gaussian noise.