EE - Trabalhos apresentados em eventos
URI permanente para esta coleçãohttps://rihomolog.furg.br/handle/1/515
Navegar
4 resultados
Resultados da Pesquisa
- ItemTwo-dimensional geometric optimization of an oscillating water column converter of real scale(2013) Gomes, Mateus das Neves; Santos, Elizaldo Domingues dos; Isoldi, Liércio André; Rocha, Luiz Alberto de OliveiraThe present paper presents a two-dimensional numerical study about the geometric optimization of an ocean Wave Energy Converter (WEC) into electrical energy. The operational principle is based on the Oscillating Water Column (OWC). The main goal is to seek for the optimal geometry which maximizes the absorbed power take off (PTO) when it is subjected to a defined wave climate. To do so, Constructal Design is employed varying the degree of freedom (DOF) H1/L (ratio between the height and length of OWC chamber) and H3 (lip submergence), while the other DOF H2/l (ratio between height and length of chimney) is kept fixed. Moreover, the chamber and total areas of OWC device are also kept fixed, being the problem constraints. In this study was adopted a regular wave with real scale dimensions. For the numerical solution it is used the Computational Fluid Dynamic (CFD) commercial code FLUENT®, based on the Finite Volume Method (FVM). The multiphasic Volume of Fluid (VOF) model is applied to tackle with the water-air interaction. The computational domain is represented by an OWC device coupled with the wave tank. The results led to a theoretical recommendation about the chamber geometry which maximizes the device performance, indicating that the higher efficiency (around 40 %) is obtained when H1/L = 0.13 and H3 = 9.50 m. On the other hand, the chamber geometry that generate the lower efficiency (around 4.4 %) is formed by H1/L = 0.03 and H3 = 9.00 m. One can note that the optimal shape is approximately 10 times more efficient than the worst geometry, showing the applicability and relevance of the Constructal Design method in the design of OWC-WEC.
- ItemComputational modeling of the air-flow in an oscillating water column system(2009) Gomes, Mateus das Neves; Olinto, Cláudio Rodrigues; Isoldi, Liércio André; Souza, Jeferson Avila; Rocha, Luiz Alberto de OliveiraSeveral alternatives for electric power production have been studied in the last decades. Because of the huge energetic resources stored in the oceans in the form of wave - about 2TW - value that is compared to the annual rate of electric power used in the earth, the conversion of the wave’s energy of the oceans in electric power comes up important as one of these alternatives. One of the ways to make that conversion is through the oscillating water column (OWC) system: the wave enters into the hydro-pneumatic chamber (resembling a cave with entry below the waterline) and the up-and-down movement of water column inside the chamber makes air flow to and from the atmosphere, driving an air turbine. The turbine is symmetric and is driven indifferently in which direction the air flows. This paper presents the computational modeling of the air flow in a oscillating water column chamber using two different methodologies: in one of them it is considered just the chamber, varying the velocity in its entrance according to the wave’s equation, considering just the air, and a new one considering the chamber put into a wave’s tank, so it takes in account the complete interaction between water and air into the chamber. In this method, to consider the water and air it is used the multiphase model volume of fluid (VOF). It was simulated the same geometric compound of an oscillating water column system with a vertically placed tower, in order to compare these two different numerical models. It is noted that the dimensions of the tested chamber are in laboratory scale and the proposed model was used to simulate a 2D case. It was used GAMBIT® software for geometry creation and mesh generation, while FLUENT® package was employed for solving the conservation equations and analysis of the results.
- ItemComputational modeling of an oscillating water column device for the Rio Grande coast(2009) Gomes, Mateus das Neves; Isoldi, Liércio André; Olinto, Cláudio Rodrigues; Rocha, Luiz Alberto Oliveira; Souza, Jeferson AvilaThis work presents the computational modeling of a converter of wave energy in electrical energy. The converter is Oscillating Water Column (OWC) type, submitted to the wave climate of Rio Grande city. The numerical simulation was performed using FLUE)T® package and employing the multiphase Volume of Fluid (VOF) model in the wave generation and in the interaction between the wave and the converter device. The computational domain was represented by a wave tank coupled with the OWC device. This domain allows the behavior analysis to be performed when the device is subjected to the incidence of regular waves. The waves were molded to represent the characteristics of the Rio Grande coastclimate. Results demonstrate that the OWC converter can be successfully used to convert the Rio Grande's coast wave energy in useful electrical energy.
- ItemEnergy from the sea: computational modeling of an overtopping device(2009) Iahnke, Silvana Letícia Pires; Gomes, Mateus das Neves; Isoldi, Liércio André; Rocha, Luiz Alberto OliveiraThis work presents a brief study about the wave energy as well as a computational modeling of an overtopping device. The numerical simulation was performed with the FLUE T® Computational Fluid Dynamic software code, employing the multiphase Volume of Fluid (VOF) model. The obtained results showed a satisfactory agreement between the numerical and analytical solutions, being the maximum difference calculated for the wave generation of approximated 4.6%. It was also observed that the knowledge of the wave height and an adequate ramp design are factors that determine the overtopping occurrence.
