EE - Escola de Engenharia
URI permanente desta comunidadehttps://rihomolog.furg.br/handle/1/512
Navegar
9 resultados
Resultados da Pesquisa
- ItemNumerical analysis including pressure drop in oscillating water column device.(2015) Gomes, Mateus das Neves; Santos, Elizaldo Domingues dos; Isoldi, Liércio André; Rocha, Luiz Alberto OliveiraThe wave energy conversion into electricity has been increasingly studied in the last years. There are several proposed converters. Among them, the oscillatingwater column (OWC) device has been widespread evaluated in literature. In this context, the main goal of this work was to perform a comparison between two kinds of physical constraints in the chimney of the OWC device, aiming to represent numerically the pressure drop imposed by the turbine on the air flow inside the OWC. To do so, the conservation equations of mass,momentumand one equation for the transport of volumetric fraction were solved with the finite volume method (FVM). To tackle thewater-air interaction, the multiphase model volume of fluid (VOF)was used. Initially, an asymmetric constraint inserted in chimney duct was reproduced and investigated. Subsequently, a second strategywas proposed,where a symmetric physical constraint with an elliptical shapewas analyzed. Itwas thus possible to establish a strategy to reproduce the pressure drop in OWC devices caused by the presence of the turbine, as well as to generate its characteristic curve.
- Item3D numerical analysis about the shape influence of the hydro-pneumatic chamber in an oscillating water column (owc).(2015) Isoldi, Liércio André; Grimmler, Juliana do Amaral Martins; Letzow, Max; Souza, Jeferson Avila; Gomes, Mateus das Neves; Rocha, Luis Alberto Oliveira; Santos, Elizaldo Domingues dosThe oceans represent one of the major energy natural resources, which potentially can be used to supply the World energy demand. In the last decades some devices to convert the wave ocean energy into electrical energy have been studied. In this work the operating principle of an Oscillating Water Column (OWC) converter was analyzed with a transient 3D numerical methodology, using the Finite Volume Method (FVM) and the Volume of Fluid (VOF) model. The incident waves on the OWC hydropneumatic chamber cause an oscillation of the water column inside the chamber producing an alternate air flow through the chimney. The air drives a turbine that is coupled to an electric generator. The aim of this work was to investigate the shape influence of the hydro-pneumatic chamber geometry in the air flow. For this, six cases were studied in laboratory scale and the results showed that the variation of the OWC chamber shape can improve 12.4% the amount of mass air flow.
- ItemTwo-dimensional geometric optimization of an oscillating water column converter of real scale(2013) Gomes, Mateus das Neves; Santos, Elizaldo Domingues dos; Isoldi, Liércio André; Rocha, Luiz Alberto de OliveiraThe present paper presents a two-dimensional numerical study about the geometric optimization of an ocean Wave Energy Converter (WEC) into electrical energy. The operational principle is based on the Oscillating Water Column (OWC). The main goal is to seek for the optimal geometry which maximizes the absorbed power take off (PTO) when it is subjected to a defined wave climate. To do so, Constructal Design is employed varying the degree of freedom (DOF) H1/L (ratio between the height and length of OWC chamber) and H3 (lip submergence), while the other DOF H2/l (ratio between height and length of chimney) is kept fixed. Moreover, the chamber and total areas of OWC device are also kept fixed, being the problem constraints. In this study was adopted a regular wave with real scale dimensions. For the numerical solution it is used the Computational Fluid Dynamic (CFD) commercial code FLUENT®, based on the Finite Volume Method (FVM). The multiphasic Volume of Fluid (VOF) model is applied to tackle with the water-air interaction. The computational domain is represented by an OWC device coupled with the wave tank. The results led to a theoretical recommendation about the chamber geometry which maximizes the device performance, indicating that the higher efficiency (around 40 %) is obtained when H1/L = 0.13 and H3 = 9.50 m. On the other hand, the chamber geometry that generate the lower efficiency (around 4.4 %) is formed by H1/L = 0.03 and H3 = 9.00 m. One can note that the optimal shape is approximately 10 times more efficient than the worst geometry, showing the applicability and relevance of the Constructal Design method in the design of OWC-WEC.
- ItemNumerical analysis of an oscillating water column converter considering a physical constraint in the chimney outlet(2014) Gomes, Mateus das Neves; Seibt, Flávio Medeiros; Rocha, Luiz Alberto Oliveira; Santos, Elizaldo Domingues dos; Isoldi, Liércio AndréThis work presents a 2D numerical study of an Oscillating Water Column (OWC) converter considering physical constraints in its outlet chimney to represent the turbine pressure drop. Two strategies were adopted. The first considers different dimensions for a physical constraint similar to an orifice plate, being the analysis performed in a laboratory scale. After that, other physical restriction with geometry similar to a rotor turbine was investigated in a real scale by means a dimensional variation. The numerical results indicate the importance of consider the pressure drop caused by turbine in the analysis of the OWC behavior.
- ItemComputational modeling applied to the study of wave energy converters (WEC)(2014) Seibt, Flávio Medeiros; Letzow, Max; Gomes, Mateus das Neves; Souza, Jeferson Avila; Rocha, Luiz Alberto Oliveira; Santos, Elizaldo Domingues dos; Isoldi, Liércio AndréThe employment of numerical methods to solve engineering problems is a reality, as well as, the worldwide concern about the need of renewable and alternative energy sources. Thus, this work presents a computational model capable of simulating the operating principle of some Wave Energy Converters (WEC). To do so, the device is coupled in a wave tank, where the sea waves are reproduced. The Finite Volume Method (FVM) and the Volume of Fluid (VOF) model are adopted. The results showed that the converter's operating principle can be numerically reproduced, demonstrating the potential of computational modeling to study this subject.
- ItemTwo-dimensional geometric optimization of an oscillating water column converter in laboratory scale(2012) Gomes, Mateus das Neves; Nascimento, Cristina Dias do; Bonafini, Beatriz Leandro; Santos, Elizaldo Domingues dos; Isoldi, Liércio André; Rocha, Luiz Alberto OliveiraThe present paper presents a two-dimensional numerical study about the geometric optimization of an ocean Wave Energy Converter (WEC) into electrical energy that has as operational principal the Oscillating Water Column (OWC). To do so, the Constructal Design fundamentals were employed to vary the degree of freedom H1/L (ratio between height and length of the OWC chamber), while the other degree of freedom H2/l (ration between height and length of chimney) was kept constant. The OWC chamber area (φ1) and the total OWC area (φ2) are also kept fixed, being the problem constraints. In this study was adopted a regular wave with laboratory scale dimensions. The main goal was to optimize the device’s geometry aiming to maximize the absorbed power when it is subjected to a defined wave climate. For the numerical solution it was used the Computational Fluid Dynamic (CFD) commercial code FLUENT®, which is based on the Finite Volume Method (FVM). The multiphasic Volume of Fluid (VOF) model was applied to treat the water-air interaction. The computational domain was represented by an OWC device coupled into a wave tank. Thereby, it was possible to analyze the WEC subjected to regular wave incidence. An optimal geometry was obtained for (H1/L)o=0.84, being this one approximately ten times more efficient then the worst case (H1/L = 0.14), showing the applicability of Constructal Design in this kind of engineering problem.
- ItemModelagem computacional de um dispositivo do tipo coluna de água oscilante para a costa de Rio Grande(2009) Gomes, Mateus das Neves; Isoldi, Liércio André; Olinto, Cláudio Rodrigues; Rocha, Luiz Alberto Oliveira; Santos, Elizaldo Domingues dos; Souza, Jeferson AvilaEste trabalho apresenta a modelagem computacional de um conversor de energia das ondas do mar em energia elétrica do tipo Coluna de Água Oscilante (CAO) submetido ao clima de ondas da costa da cidade de Rio Grande. A simulação numérica foi realizada utilizando-se o pacote FLUENT® e empregando-se o modelo multifásico Volume of Fluid (VOF) na geração da onda e na interação da mesma com o conversor. O domínio computacional foi representado por um tanque de ondas acoplado ao dispositivo CAO, possibilitando analisar o seu comportamento quando sujeito a incidência de ondas regulares com características semelhantes ao clima de ondas na costa de Rio Grande. Os resultados obtidos demonstram a potencialidade da região em gerar energia elétrica a partir da energia das ondas do mar, através do conversor tipo CAO.
- ItemModelagem computacional de um dispositivo do tipo coluna de água oscilante para a costa de Rio Grande(2009) Gomes, Mateus das Neves; Isoldi, Liércio André; Olinto, Cláudio Rodrigues; Rocha, Luiz Alberto Oliveira; Santos, Elizaldo Domingues dos; Souza, Jeferson AvilaEste trabalho apresenta a modelagem computacional de um conversor de energia das ondas do mar em energia elétrica do tipo Coluna de Água Oscilante (CAO) submetido ao clima de ondas da costa da cidade de Rio Grande. A simulação numérica foi realizada utilizando-se o pacote FLUENT® e empregando-se o modelo multifásico Volume of Fluid (VOF) na geração da onda e na interação da mesma com o conversor. O domínio computacional foi representado por um tanque de ondas acoplado ao dispositivo CAO, possibilitando analisar o seu comportamento quando sujeito a incidência de ondas regulares com características semelhantes ao clima de ondas na costa de Rio Grande. Os resultados obtidos demonstram a potencialidade da região em gerar energia elétrica a partir da energia das ondas do mar, através do conversor tipo CAO.
- ItemComputational modeling of an oscillating water column device for the Rio Grande coast(2009) Gomes, Mateus das Neves; Isoldi, Liércio André; Olinto, Cláudio Rodrigues; Rocha, Luiz Alberto Oliveira; Souza, Jeferson AvilaThis work presents the computational modeling of a converter of wave energy in electrical energy. The converter is Oscillating Water Column (OWC) type, submitted to the wave climate of Rio Grande city. The numerical simulation was performed using FLUE)T® package and employing the multiphase Volume of Fluid (VOF) model in the wave generation and in the interaction between the wave and the converter device. The computational domain was represented by a wave tank coupled with the OWC device. This domain allows the behavior analysis to be performed when the device is subjected to the incidence of regular waves. The waves were molded to represent the characteristics of the Rio Grande coastclimate. Results demonstrate that the OWC converter can be successfully used to convert the Rio Grande's coast wave energy in useful electrical energy.
