EE - Escola de Engenharia
URI permanente desta comunidadehttps://rihomolog.furg.br/handle/1/512
Navegar
7 resultados
Resultados da Pesquisa
- ItemTwo-dimensional computational modeling of the soil thermal behavior due to the incidence of solar radiation(2013) Brum, Ruth da Silva; Isoldi, Liércio André; Santos, Elizaldo Domingues dos; Vaz, Joaquim; Rocha, Luiz Alberto OliveiraNowadays, there is a focus on finding sustainable energy sources, as well as, alternatives to rationalize the use of electrical energy. In this sense, the employment of Earth-Air Heat Exchangers (EAHE) is one technique which allows the reduction of energy consumption for climatization of buildings environments. The present study shows the evaluation of a numerical method to estimate the ground thermal potential, allowing its applicability for future thermal design of EAHE. The soil domain is considered two-dimensional and a transient solution for the thermal behavior of the soil is obtained. Moreover, a soil surface temperature distribution equation based on experimental data is employed to define the domain boundary conditions. The simulations are performed with a numerical method based on the finite volume method, more precisely using the software FLUENT®. The results presented an excellent agreement with analytical solutions showing the validity and effectiveness of the computational model for prediction of the soil behavior. The numerical results were also confronted with experimental ones predicted into literature and show a good agreement, with a deviation lower than 14%. The main difference is attributed to the duct presence which is taken into account only for the experimental study.
- ItemA new computational modeling to predict the behavior of Earth-Air Heat Exchangers(2013) Brum, Ruth da Silva; Vaz, Joaquim; Rocha, Luiz Alberto Oliveira; Santos, Elizaldo Domingues dos; Isoldi, Liércio AndréThe use of renewable energy sources to improve the thermal conditions of built environments and hencedecreasing the consumption of conventional energy is an important aspect to design a sustainable build-ing. Within this context, it is possible to harness the solar energy that reaches the Earth’s surface andis stored by the soil as thermal energy. To do so, the Earth-Air Heat Exchanger (EAHE) device can beemployed, consisting of a buried duct through which the external ambient air is insufflated. The flowingair exchanges heat with surround soil, and leaves the device with a milder temperature compared to itsinput temperature. The main goal of this work was to present a new computational modeling to predictthe thermal behavior of EAHE. This new numerical model has the advantage of needing a lower com-putational effort, allowing the study about the influence of operational and constructive parameters, aswell as, the application of geometric optimization methods in EAHE. A case study was developed whereinfluence of the installation depth in the thermal potential of an EAHE was investigated. The results arein agreement with those found in literature; however they were obtained with a reduction in processingtime of almost 45%.
- ItemThree-dimensional numerical modeling of RTM and LRTM processes(2012) Isoldi, Liércio André; Oliveira, Cristiano Peres; Rocha, Luiz Alberto Oliveira; Souza, Jeferson Avila; Amico, Sandro CamposResin Transfer Molding (RTM) is a manufacturing process in which a liquid resin is injected into a closed mold pre-loaded with a porous fibrous preform, producing complex composite parts with good surface finishing. Resin flow is a critical step in the process. In this work, the numerical study of the resin flow in RTM applications was performed employing a general Computational Fluid Dynamics software which does not have a specific RTM module, making it necessary to use the Volume of Fluid method for the filling problem solution. Examples were presented and compared with analytical, experimental and numerical results showing the validity and effectiveness of the present study, with maximum difference among these solutions of around 8%. Besides, based on the computational model for the RTM process, a new computational methodology was developed to simulate Light Resin Transfer Molding (LRTM). In this process, resin is injected into the mold through an empty injection channel (without porous medium) which runs all around the perimeter of the mold. The ability of FLUENT® package to simulate geometries which combine porous media regions with open (empty) regions was used. Two specific cases were simulated, showing the differences in time and behavior between RTM and LRTM processes.
- ItemComputational modeling applied to the study of wave energy converters (WEC)(2014) Seibt, Flávio Medeiros; Letzow, Max; Gomes, Mateus das Neves; Souza, Jeferson Avila; Rocha, Luiz Alberto Oliveira; Santos, Elizaldo Domingues dos; Isoldi, Liércio AndréThe employment of numerical methods to solve engineering problems is a reality, as well as, the worldwide concern about the need of renewable and alternative energy sources. Thus, this work presents a computational model capable of simulating the operating principle of some Wave Energy Converters (WEC). To do so, the device is coupled in a wave tank, where the sea waves are reproduced. The Finite Volume Method (FVM) and the Volume of Fluid (VOF) model are adopted. The results showed that the converter's operating principle can be numerically reproduced, demonstrating the potential of computational modeling to study this subject.
- ItemModelagem computacional de um dispositivo do tipo coluna de água oscilante para a costa de Rio Grande(2009) Gomes, Mateus das Neves; Isoldi, Liércio André; Olinto, Cláudio Rodrigues; Rocha, Luiz Alberto Oliveira; Santos, Elizaldo Domingues dos; Souza, Jeferson AvilaEste trabalho apresenta a modelagem computacional de um conversor de energia das ondas do mar em energia elétrica do tipo Coluna de Água Oscilante (CAO) submetido ao clima de ondas da costa da cidade de Rio Grande. A simulação numérica foi realizada utilizando-se o pacote FLUENT® e empregando-se o modelo multifásico Volume of Fluid (VOF) na geração da onda e na interação da mesma com o conversor. O domínio computacional foi representado por um tanque de ondas acoplado ao dispositivo CAO, possibilitando analisar o seu comportamento quando sujeito a incidência de ondas regulares com características semelhantes ao clima de ondas na costa de Rio Grande. Os resultados obtidos demonstram a potencialidade da região em gerar energia elétrica a partir da energia das ondas do mar, através do conversor tipo CAO.
- ItemModelagem computacional de um dispositivo do tipo coluna de água oscilante para a costa de Rio Grande(2009) Gomes, Mateus das Neves; Isoldi, Liércio André; Olinto, Cláudio Rodrigues; Rocha, Luiz Alberto Oliveira; Santos, Elizaldo Domingues dos; Souza, Jeferson AvilaEste trabalho apresenta a modelagem computacional de um conversor de energia das ondas do mar em energia elétrica do tipo Coluna de Água Oscilante (CAO) submetido ao clima de ondas da costa da cidade de Rio Grande. A simulação numérica foi realizada utilizando-se o pacote FLUENT® e empregando-se o modelo multifásico Volume of Fluid (VOF) na geração da onda e na interação da mesma com o conversor. O domínio computacional foi representado por um tanque de ondas acoplado ao dispositivo CAO, possibilitando analisar o seu comportamento quando sujeito a incidência de ondas regulares com características semelhantes ao clima de ondas na costa de Rio Grande. Os resultados obtidos demonstram a potencialidade da região em gerar energia elétrica a partir da energia das ondas do mar, através do conversor tipo CAO.
- ItemComputational modeling of an oscillating water column device for the Rio Grande coast(2009) Gomes, Mateus das Neves; Isoldi, Liércio André; Olinto, Cláudio Rodrigues; Rocha, Luiz Alberto Oliveira; Souza, Jeferson AvilaThis work presents the computational modeling of a converter of wave energy in electrical energy. The converter is Oscillating Water Column (OWC) type, submitted to the wave climate of Rio Grande city. The numerical simulation was performed using FLUE)T® package and employing the multiphase Volume of Fluid (VOF) model in the wave generation and in the interaction between the wave and the converter device. The computational domain was represented by a wave tank coupled with the OWC device. This domain allows the behavior analysis to be performed when the device is subjected to the incidence of regular waves. The waves were molded to represent the characteristics of the Rio Grande coastclimate. Results demonstrate that the OWC converter can be successfully used to convert the Rio Grande's coast wave energy in useful electrical energy.
