EE - Escola de Engenharia
URI permanente desta comunidadehttps://rihomolog.furg.br/handle/1/512
Navegar
7 resultados
Resultados da Pesquisa
- ItemConstructal design of non-uniform x-shaped cavity(2013) Link, Fernanda Bichet; Santos, Elizaldo Domingues dos; Isoldi, Liércio André; Rocha, Luiz Alberto de OliveiraThis paper applies constructal design to study a non-uniform X-shaped cavity that penetrates a conductive solid wall. The goal is to minimize the maximal dimensionless excess of temperature between the solid body and cavity. There is a uniform heat generation on the solid body. The total volume and the volume of the cavity are fixed, but the angle formed between the stems of the cavity may vary. The cavity surfaces are isothermal while the solid body has adiabatic conditions in the outer surface. Results indicate that the optimal X-cavity performs 60.1% better than the Cshaped cavity and 44% better than the T-shaped cavity. However, it has a performance approximately 38% inferior than the performance of the optimized H-shaped cavity.
- ItemComputational modeling of the resin transfer molding process(2009) Oliveira, Cristiano Peres; Souza, Jeferson Avila; Isoldi, Liércio André; Rocha, Luiz Alberto de Oliveira; Amico, Sandro CamposThe Resin Transfer Molding, or RTM, process has recently become one of the most important processes of fiber reinforced composites manufacturing. The process consists essentially of three stages: “an arrangement of fiber mats in a mold cavity, a mold filling by a polymeric resin and a curing phase”. Most of the difficulties of incorporating RTM occur during the filling stage. To create an acceptable composite part the preform must be completely impregnated with resin. The conditions which most strongly influence the flow are mold geometry, resin rheology, preform permeability, and location of the injection ports and vents. There are different types of RTM process, e.g. RTM Light or VARTM, employed in accordance with the final desired characteristics and properties of composite components. Besides, RTM may also be carried out using multilayers, with distinct characteristics. The numerical simulation of the mold filling stage becomes an important tool which helps the mold designer to understand the process parameters. Considering the fibrous preform as a porous media, the phenomenon can be modeled by Darcy’s law to describe resin flow. This study used two commercial softwares, FLUENT® and PAM-RTM®. FLUENT® is a general Computational Fluid Dynamics (CFD) code, based on Finite Volume Method (FVM). It applies the Volume of Fluid (VOF) method to solve the filling problem because it does not have a specific RTM module. PAM-RTM® is a specific package for RTM problems, based on the Finite Element Method (FEM). These tools were applied to simulate numerically several RTM examples of the resin flow into the mold and the results for both softwares were compared with previous works.
- ItemConstructal design applied to the light resin transfer molding (LRTM) manufacturing process(2013) Isoldi, Liércio André; Souza, Jeferson Avila; Santos, Elizaldo Domingues dos; Marchesini, Renato; Porto, Joseane da Silva; Letzow, Max; Rocha, Luiz Alberto de Oliveira; Amico, Sandro CamposThe Light Resin Transfer Molding (LRTM) is a manufacturing process where a closed mold pre-loaded with a porous fibrous preform is filled by a liquid resin injected through an empty channel (without porous medium) which runs all around the perimeter of the mold, producing polymeric composite parts. Using the capability of FLUENT® package to simulate a multiphase flow (resin and air) in a geometry composed by porous media regions and empty regions, a computational model based on the Finite Volume Method (FVM) was applied to reproduce the resin flow behavior during the LRTM process. The aim of this work was to define the optimal geometry for the empty channel (border) by means the Constructal Design method. To do so, considering a border with a rectangular cross sectional area, the degree of freedom wb/tb (ratio between the width and thickness of the border) can vary while the border volume is kept constant. The results showed that employing the Constructal Design it is possible to decrease the filling time of the LRTM process in almost 20 %, being this an unpublished use for the Constructal Theory.
- ItemNumerical study of resin distribution in two different arrangements of vascular channels by means of constructal design(2013) Machado, Roselaine Neves; Isoldi, Liércio André; Santos, Elizaldo Domingues dos; Rocha, Luiz Alberto de OliveiraIn the present work two different arrangements of vascular channels are studied numerically and their geometry is optimized by means of Constructal Design. The main purpose is to seek for the best geometry which minimizes the resin flow resistance inside the channels. The arrangement of vascular channels consists in two horizontal channels of diameter D2 connected with two vertical channels of diameter D1. The channels of resin flow are distributed in a solid domain with two different ratios of height and length (H/L = 0.67 and 1.5) in order to illustrate the process of regeneration of composite materials. For all of evaluated configurations the ratio between the areas occupied by the channels and by the solid domain are kept fixed (ϕ = 0.1). It is considered a two dimensional, laminar and steady state flow (ReD2 = 1.0). The conservation equations of mass and momentum are solved numerically by means of the finite volume method (FVM). The results showed that the optimal geometric configuration has a flow resistance several times lower than that found with the worst geometry. For example, for H/L = 0.67, the ratio (D1/D2)o = 0.76 conduct to a fluid dynamic performance nearly 32 times superior than that found for D1/D2 = 0.1. It is also noticed that the best shapes are achieved when the pressure and velocity fields has the most homogeneous distribution, i.e., according to the constructal principle of “optimal distribution of imperfections”.
- ItemTwo-dimensional geometric optimization of an oscillating water column converter of real scale(2013) Gomes, Mateus das Neves; Santos, Elizaldo Domingues dos; Isoldi, Liércio André; Rocha, Luiz Alberto de OliveiraThe present paper presents a two-dimensional numerical study about the geometric optimization of an ocean Wave Energy Converter (WEC) into electrical energy. The operational principle is based on the Oscillating Water Column (OWC). The main goal is to seek for the optimal geometry which maximizes the absorbed power take off (PTO) when it is subjected to a defined wave climate. To do so, Constructal Design is employed varying the degree of freedom (DOF) H1/L (ratio between the height and length of OWC chamber) and H3 (lip submergence), while the other DOF H2/l (ratio between height and length of chimney) is kept fixed. Moreover, the chamber and total areas of OWC device are also kept fixed, being the problem constraints. In this study was adopted a regular wave with real scale dimensions. For the numerical solution it is used the Computational Fluid Dynamic (CFD) commercial code FLUENT®, based on the Finite Volume Method (FVM). The multiphasic Volume of Fluid (VOF) model is applied to tackle with the water-air interaction. The computational domain is represented by an OWC device coupled with the wave tank. The results led to a theoretical recommendation about the chamber geometry which maximizes the device performance, indicating that the higher efficiency (around 40 %) is obtained when H1/L = 0.13 and H3 = 9.50 m. On the other hand, the chamber geometry that generate the lower efficiency (around 4.4 %) is formed by H1/L = 0.03 and H3 = 9.00 m. One can note that the optimal shape is approximately 10 times more efficient than the worst geometry, showing the applicability and relevance of the Constructal Design method in the design of OWC-WEC.
- ItemComputational modeling of the air-flow in an oscillating water column system(2009) Gomes, Mateus das Neves; Olinto, Cláudio Rodrigues; Isoldi, Liércio André; Souza, Jeferson Avila; Rocha, Luiz Alberto de OliveiraSeveral alternatives for electric power production have been studied in the last decades. Because of the huge energetic resources stored in the oceans in the form of wave - about 2TW - value that is compared to the annual rate of electric power used in the earth, the conversion of the wave’s energy of the oceans in electric power comes up important as one of these alternatives. One of the ways to make that conversion is through the oscillating water column (OWC) system: the wave enters into the hydro-pneumatic chamber (resembling a cave with entry below the waterline) and the up-and-down movement of water column inside the chamber makes air flow to and from the atmosphere, driving an air turbine. The turbine is symmetric and is driven indifferently in which direction the air flows. This paper presents the computational modeling of the air flow in a oscillating water column chamber using two different methodologies: in one of them it is considered just the chamber, varying the velocity in its entrance according to the wave’s equation, considering just the air, and a new one considering the chamber put into a wave’s tank, so it takes in account the complete interaction between water and air into the chamber. In this method, to consider the water and air it is used the multiphase model volume of fluid (VOF). It was simulated the same geometric compound of an oscillating water column system with a vertically placed tower, in order to compare these two different numerical models. It is noted that the dimensions of the tested chamber are in laboratory scale and the proposed model was used to simulate a 2D case. It was used GAMBIT® software for geometry creation and mesh generation, while FLUENT® package was employed for solving the conservation equations and analysis of the results.
- ItemOtimização geométrica de placas com enrijecedores submetidas à flexão(2012) Silveira, Thiago da; Correia, Anderson Luis Garcia; Silva, Caio César de Castro da; Rocha, Luiz Alberto de Oliveira; Real, Mauro de Vasconcellos; Santos, Elizaldo Domingues dos; Isoldi, Liércio AndréAs placas enrijecidas são muito utilizadas em estruturas navais. Quando estas estruturas estão sob forte ação de cargas de flexão, é necessário que os reforços contribuam para a redução da deflexão da placa. O Método de Elementos Finitos (MEF) pode ser utilizado para obter os valores da deflexão resultante de cargas de flexão sobre a placa. Para otimizar a geometria da placa enrijecida faz-se uso da Teoria Constructal desenvolvida por Adrian Bejan. Com as geometrias otimizadas, é possível a obtenção de deflexões que apresentam melhoria de aproximadamente 84% em relação às placas sem enrijecedores.
