Universidade
Federal do Rio Grande
  • Alto contraste


 

EE - Escola de Engenharia

URI permanente desta comunidadehttps://rihomolog.furg.br/handle/1/512

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 8 de 8
  • Item
    Resin transfer molding process: a numerical analysis
    (2014) Oliveira, Iran Rodrigues de; Amico, Sandro Campos; Souza, Jeferson Avila; Lima, Antonio Gilson Barbosa de
    This work aims to investigate the infiltration of a CaCO3 filled resin using experiments and the PAM-RTM software. A preform of glass fiber mat, with dimensions 320 x 150 x 3.6 mm, has been used for experiments conducted at room temperature, with injection pressure of 0.25bar. The resin contained 10 and 40% CaCO3 content with particle size 38μm. The numerical results were evaluated by direct comparison with experimental data. The flat flow-front profile of the rectilinear flow was reached approximately halfway the length of the mold. It was observed, that the speed of the filling decreases with increasing CaCO3 content and,the higher the amount of CaCO3 in the resin, the lower the permeability of the reinforcement that is found. The reduction in permeability is due to the presence of calcium carbonate particles between the fibers, hindering the resin flow in the fibrous media. The computational fluid flow analysis with the PAM-RTM proved to be an accurate tool study for the processing of composite materials.
  • Item
    Numerical analysis of the resin transfer molding process via PAM - RTM Software
    (2015) Oliveira, Iran Rodrigues de; Amico, Sandro Campos; Souza, Jeferson Avila; Lima, Antonio Gilson Barbosa de
    This work aims to investigate the infiltration of a CaCO3 filled resin in fibrous porous media (resin transfer molding process) using the PAM-RTM software. A preform of glass fiber mat (fraction 30%), with dimensions 320 x 150 x 3.6 mm, has been used in rectilinear injection experiments conducted at room temperature and injection pressure 0.25, 0.50 and 0.75 bar. The polyester resin contain 0% and 40% CaCO3. The numerical results were evaluated by direct comparison with experimental data. The flat flow-front profile of the rectilinear flow was reached approximately half length of the mold. It was observed, that the both velocity infiltration and permeability have decreased with increasing the CaCO3 content, thus, increasing the time to processing of the composite material.
  • Imagem de Miniatura
    Item
    A numerical methodology for permeability determination of reinforcements for polymeric composites
    (2012) Souza, Jeferson Avila; Isoldi, Liércio André; Santos, Elizaldo Domingues dos; Oliveira, Cristiano Peres; Amico, Sandro Campos
    This work focus on developing a numerical methodology for the determination of permeability of RTM reinforcements. The method allows the calculation of the three permeability components (Kxx, Kyy and Kzz) from a set of time dependent flow front coordinates data; one coordinate for each permeability component. An initial guess is set for the permeabilities and the difference between numerical and experimental values of flow front position at a specific time is minimized with the solution of an algebraic system of equations. Newton-Raphson method was used to solve the non-linear system of equations. The results presented in this paper were obtained for a rectilinear (1D) and a radial 2D problem, both with analytical solutions for the flow front position as a function of time. For the 1D comparison between the numerically calculated Kxx and the analytical value agreed within 1.7% and, for the 2D radial problem, numerical and analytical values of Kxx and Kyy agreed within 1.3%.
  • Item
    Numerical simulation of the resin transport through fiber reinforcement medium
    (SOUZA, Jeferson Avila; ROCHA, Luiz Alberto Oliveira; AMICO, Sandro Campos. Numerical simulation of the resin transport through fiber reinforcement medium. In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING – COBEM, 19., 2007, Brasília. Anais... Brasília: [s.n.], 2007. Disponível em: . Acesso em: 25 jul. 2015., 2007) Souza, Jeferson Avila; Rocha, Luiz Alberto Oliveira; Amico, Sandro Campos
    This paper describes the numerical simulation of the RTM (Resin Transfer Molding) process applied to the modeling of the resin transport through a fibrous reinforcement. The molding volume which is to be impregnated with the resin is considered as a porous medium and the Darcy equation is used to determine the resin transport velocity through the mold. A control volume finite element method is used for the determination of the pressure gradients inside the mold and the resin flow front advance is obtained using a FAN technique. The finite volume method was built to be used with a bi-dimensional unstructured grid, hence allowing the discretization of complex geometries. In the simulation presented here, resin physical properties, like viscosity and density, and the permeability of the media were kept constants.
  • Imagem de Miniatura
    Item
    Resin transfer molding process: a numerical investigation
    (Trans Tech Publications, 2013) Oliveira, Iran Rodrigues de; Amico, Sandro Campos; Souza, Jeferson Avila; Luz, Felipe Ferreira; Barcella, Rodrigo Araujo; Lima, Antonio Gilson Barbosa de
    In the processing of high performance composite materials, the RTM process has been widely used by many sectors of the industry. This process consists in injecting a polymeric resin through a fibrous reinforcement arranged within a mold. In this sense, this study aims to simulate the rectilinear infiltration of pure resin and filled resin (40% CaCO3) in a mold with glass fiber preform, using the PAM-RTM commercial software. Numerical results of the filling time and fluid front flow position over time were assessed by comparison with the experimental data and a good accuracy was obtained.
  • Imagem de Miniatura
    Item
    A numerical investigation of the resin flow front tracking applied to the RTM process
    (2011) Souza, Jeferson Avila; Rocha, Luiz Alberto Oliveira; Amico, Sandro Campos; Vargas, Jose Viriato Coelho
    Resin Transfer Molding (RTM) is largely used for the manufacturing of high-quality composite components and the key stage during processing is the resin infiltration. The complete understanding of this phenomenon is of utmost importance for efficient mold construction and the fast production of high quality components. This paper investigates the resin flow phenomenon within the mold. A computational application was developed to track the resin flow-front position, which uses a finite volume method to determine the pressure field and a FAN (Flow Analysis Network) technique to track the flow front. The mass conservation problem observed with traditional FE-CV (Finite Element-Control Volume) methods is also investigated and the use of a finite volume method to minimize this inconsistency is proposed. Three proposed case studies are used to validate the methodology by direct comparison with analytical and a commercial software solutions. The results show that the proposed methodology is highly efficient to determine the resin flow front, showing an improvement regarding mass conservation across volumes.
  • Imagem de Miniatura
    Item
    Resin transfer molding process: a numerical and experimental investigation
    (2013) Oliveira, Iran Rodrigues de; Amico, Sandro Campos; Souza, Jeferson Avila; Lima, Antonio Gilson Barbosa de
    Resin Transfer Molding (RTM) is one of the composite manufacturing technique that consists in injecting a resin pre-catalysed thermosetting in a closed mold containing a dry fiber preform, where the resin is impregnated. In this sense, the aim of this research is to study theoretically and experimentally the RTM process. Experimental and simulations of the rectilinear infiltration of polyester resin (filled and non filled with CaCO3) in mold with glass fiber preform were performed in cavity with dimensions 320 × 150 × 3.6 mm. Numerical results of the filling time and fluid front position over time were assessed by comparison with experimental data and good accuracy was obtained. It was verified that, the CaCO3 content affect resin velocity during filling, the permeability of the reinforcement and resin viscosity, thus the filling time is affected strongly.
  • Imagem de Miniatura
    Item
    Computational modeling of RTM and LRTM processes applied to complex geometries
    (2012) Porto, Joseane da Silva; Letzow, Max; Santos, Elizaldo Domingues dos; Amico, Sandro Campos; Souza, Jeferson Avila; Isoldi, Liércio André
    Light Resin Transfer Molding (LRTM) is a variation of the conventional manufacturing process known as Resin Transfer Molding (RTM). In general terms, these manufacturing processes consist of a closed mould with a preplaced fibrous preform through which a polymeric resin is injected, filling the mold completely, producing parts with complex geometries (in general) and good finish. Those processes differ, among other aspects, in the way that injection occurs. In the RTM process the resin is injected through discrete points whereas in LRTM it is injected into an empty channel (with no porous medium) which surrounds the entire mold perimeter. There are several numerical studies involving the RTM process but LRTM has not been explored enough by the scientific community. Based on that, this work proposes a numerical model developed in the FLUENT package to study the resin flow behavior in the LRTM process. Darcy’s law and Volume of Fluid method (VOF) are used to treat the interaction between air and resin during the flow in the porous medium, i.e. the mold filling problem. Moreover, two three-dimensional geometries were numerically simulated considering the RTM and LRTM processes. It was possible to note the huge differences about resin flow behavior and filling time between these processes to manufacture the same parts.