Análise de vida útil à fadiga de um modelo de tendão de uma torre eólica offshore TLP
Resumo
Atualmente, a sociedade atravessa uma transição energética significativa, migrando dos hidrocarbonetos para fontes de energia de baixa emissão. Neste contexto, a energia eólica offshore tem se mostrado uma das fontes de energia renovável mais atrativas, pois possui vantagens como não disputar espaço com instalações habitacionais, espaço abundante para implementação e ventos mais fortes e constantes. Entretanto, são necessárias linhas de transmissão mais extensas e robustas e sua manutenção e projeto requerem geralmente maior expertise. Portanto, visando contribuir com a matriz de energias renováveis, faz-se necessária a pesquisa acerca da análise e otimização estrutural para potencialização da eficiência e redução de custos de instalação e operação de fazendas eólicas offshore, sobretudo as flutuantes. Ademais, avaliar o comportamento dinâmico desses sistemas é fundamental para garantir sua integridade estrutural e elevar sua longevidade. Um dos modos de falha mais frequentes ocorre por fadiga, que ocorre nos estágios de formação da trinca, propagação da trinca e, finalmente, ruptura. Esse fenômeno pode ocorrer por variação de tensões que, no ambiente offshore, podem se desenvolver pela ação de forças de onda e vibrações induzidas por vórtices. Neste contexto, o presente estudo investiga os pontos críticos e vida útil à fadiga em tendões de amarração de torres eólicas flutuantes do tipo TLP (Tension-Leg Platform) submetidas a ação de ondas regulares através de uma campanha experimental realizada no canal de ondas do Laboratório de Interação Fluido Estrutura (LIFE/FURG). A campanha consistiu em nove períodos de onda para cada uma das cinco pré- trações impostas, totalizando quarenta e cinco experimentos. A vida útil em ciclos foi estimada através de curvas S-N para aços de alto desempenho em ambiente marinho e livres de corrosão. Os resultados experimentais sugeriram maior suscetibilidade à fadiga em menores períodos de onda. As maiores concentrações de tensão foram verificadas na região mais próxima ao fundo, mesmo com condição de vinculação articulada na extremidade inferior. Os maiores níveis de carga axial induziram a menores danos acumulados por fadiga nas regiões próximas ao fundo. Contudo, elevaram os danos acumulados em regiões próximas ao topo. O dano total acumulado foi contabilizado através da lei de Miner. O comportamento dinâmico do tendão foi avaliado através de uma análise paramétrica realizada em um modelo numérico desenvolvido em MATLAB por intermédio do método dos elementos finitos. Os resultados demonstraram que, para o período de onda de 1,08 segundos e carga axial inicial de 44,7N, a interação onda-tendão foi dominada pelas componentes inerciais de força, o que é coerente para a faixa de número de Keulegan-Carpenter. O modelo numérico se mostrou eficiente na análise dinâmica do tendão, reproduzindo um padrão de deslocamentos semelhante ao sinal obtido durante os experimentos para as mesmas condições e posição. Em ambas as abordagens, foram identificadas superharmônicas nos sinais que sugerem a presença do fenômeno dinâmico springing. Maiores análises são necessárias para a confirmação deste fenômeno. Esta pesquisa é significativa pois abrange uma análise do impacto de fenômenos hidrodinâmicos na vida útil à fadiga de materiais utilizados na fabricação de tendões de torres eólicas flutuantes. Os resultados aqui apresentados visam contribuir para o desenvolvimento de elementos estruturais, tecnologias de fabricação e otimização estrutural no contexto de energias renováveis no mar.
Currently, society is undergoing a significant energy transition, shifting from hydrocarbons to low-emission energy sources. In this context, offshore wind energy has proven to be one of the most attractive renewable energy sources, as it offers advantages such as not competing for space with residential areas, abundant space for implementation, and stronger, more consistent winds. However, more extensive and robust transmission lines are required, and its maintenance and design generally demand greater expertise. Therefore, to contribute to the renewable energy matrix, research on structural analysis and optimization is necessary to enhance efficiency and reduce installation and operational costs of offshore wind farms, particularly floating ones. Furthermore, assessing the dynamic behavior of these systems is essential to ensure their structural integrity and extend their lifespan. One of the most frequent failure modes occurs due to fatigue, which progresses through crack initiation, crack propagation, and ultimately, rupture. This phenomenon can occur due to stress variations that, in the offshore environment, may be caused by wave forces and vortex- induced vibrations. In this context, the present study investigates critical points and fatigue life in mooring tendons of TLP (Tension-Leg Platform) floating wind turbines subjected to regular wave action through an experimental campaign conducted in the wave tank of the Fluid-Structure Interaction Laboratory (LIFE/FURG). The campaign consisted of nine wave periods for each of the five imposed pre-tensions, totaling forty- five experiments. The fatigue life in cycles was estimated using S-N curves relation to free corrosion high-performance steels in a marine environment. Experimental results suggested greater susceptibility to fatigue in shorter wave periods. The highest stress concentrations were observed in the region closest to the seabed, even with articulated boundary conditions at the lower end. Higher axial load levels induced lower accumulated fatigue damage near the seabed yet increased accumulated damage near the top. The total accumulated damage was accounted for using Miner’s rule. The dynamic behavior of the tendon was evaluated through a parametric analysis performed in a numerical model developed in MATLAB using the finite element method. The results demonstrated that, for a wave period of 1.08 seconds and an initial axial load of 44.7N, the wave-tendon interaction was dominated by the inertial force components, which is consistent with the Keulegan-Carpenter number range. The numerical model proved efficient in the dynamic analysis of the tendon, reproducing a displacement pattern similar to the signal obtained during the experiments under the same conditions and position. In both approaches, superharmonics were identified in the signals, suggesting the presence of the dynamic springing phenomenon. Further analyses are required to confirm this phenomenon. This research is significant as it encompasses an analysis of the impact of hydrodynamic phenomena on the fatigue life of materials used in the manufacture of tendons for floating wind turbines. The results presented here aim to contribute to the development of structural elements, manufacturing technologies, and structural optimization in the context of offshore renewable energies.
Currently, society is undergoing a significant energy transition, shifting from hydrocarbons to low-emission energy sources. In this context, offshore wind energy has proven to be one of the most attractive renewable energy sources, as it offers advantages such as not competing for space with residential areas, abundant space for implementation, and stronger, more consistent winds. However, more extensive and robust transmission lines are required, and its maintenance and design generally demand greater expertise. Therefore, to contribute to the renewable energy matrix, research on structural analysis and optimization is necessary to enhance efficiency and reduce installation and operational costs of offshore wind farms, particularly floating ones. Furthermore, assessing the dynamic behavior of these systems is essential to ensure their structural integrity and extend their lifespan. One of the most frequent failure modes occurs due to fatigue, which progresses through crack initiation, crack propagation, and ultimately, rupture. This phenomenon can occur due to stress variations that, in the offshore environment, may be caused by wave forces and vortex- induced vibrations. In this context, the present study investigates critical points and fatigue life in mooring tendons of TLP (Tension-Leg Platform) floating wind turbines subjected to regular wave action through an experimental campaign conducted in the wave tank of the Fluid-Structure Interaction Laboratory (LIFE/FURG). The campaign consisted of nine wave periods for each of the five imposed pre-tensions, totaling forty- five experiments. The fatigue life in cycles was estimated using S-N curves relation to free corrosion high-performance steels in a marine environment. Experimental results suggested greater susceptibility to fatigue in shorter wave periods. The highest stress concentrations were observed in the region closest to the seabed, even with articulated boundary conditions at the lower end. Higher axial load levels induced lower accumulated fatigue damage near the seabed yet increased accumulated damage near the top. The total accumulated damage was accounted for using Miner’s rule. The dynamic behavior of the tendon was evaluated through a parametric analysis performed in a numerical model developed in MATLAB using the finite element method. The results demonstrated that, for a wave period of 1.08 seconds and an initial axial load of 44.7N, the wave-tendon interaction was dominated by the inertial force components, which is consistent with the Keulegan-Carpenter number range. The numerical model proved efficient in the dynamic analysis of the tendon, reproducing a displacement pattern similar to the signal obtained during the experiments under the same conditions and position. In both approaches, superharmonics were identified in the signals, suggesting the presence of the dynamic springing phenomenon. Further analyses are required to confirm this phenomenon. This research is significant as it encompasses an analysis of the impact of hydrodynamic phenomena on the fatigue life of materials used in the manufacture of tendons for floating wind turbines. The results presented here aim to contribute to the development of structural elements, manufacturing technologies, and structural optimization in the context of offshore renewable energies.
Descrição
Dissertação (mestrado)
Palavras-chave
TLP-FOWT, Fadiga, Energia eólica, Springing, Hidrodinâmica de tendões, Fatigue, Wind energy, Tendons hydrodynamics
Citação
ROSA, Igor Almeida da. Análise de vida útil à fadiga de um modelo de tendão de uma torre eólica offshore TLP. 2024. 116f. Dissertação (mestrado) - Programa de Pós-Graduação em Engenharia Mecânica, Escola de Engenharia, Universidade Federal do Rio Grande, Rio Grande, 2024.
