Aumento da eficiência de biofixação de CO2 por microalgas
Resumo
O dióxido de carbono (CO2) é considerado como um dos mais importantes gases de efeito
estufa (GEE). As emissões de CO2 provenientes de combustíveis fósseis, especialmente a
partir da combustão de carvão mineral contribuem para o aquecimento global tornando-se
uma questão importante nos campos da ciência, meio ambiente, economia e política nos
últimos anos. Neste contexto, as microalgas podem capturar o CO2, contribuindo com a
redução do efeito estufa e gerando biomassa com diversas aplicações. O objetivo deste
trabalho foi promover o aumento da eficiência de biofixação de CO2 por Spirulina sp. LEB
18. Para tal, o trabalho foi dividido em duas etapas, na primeira foi avaliado o desempenho de
quatro configurações de difusores (pedra sinterizada, cortina porosa, madeira porosa e anel
perfurado) e vazões específicas de alimentação da corrente gasosa (0,05 e 0,3 vvm) na
transferência de CO2 para o meio líquido, biofixação de CO2 e na composição da biomassa
produzida de Spirulina. Em uma segunda etapa, foi desenvolvido um sistema composto por
membranas de fibra oca (MFO) para alimentação de CO2 no cultivo de Spirulina sob dois
modos de agitação. O sistema foi avaliado quanto à biofixação de CO2, cinética de
crescimento e composição da biomassa produzida. Este foi comparado a ensaios com pedra
sinterizada (ensaio controle, CT). As máximas eficiência de transferência do CO2 (ε) (26,0 %)
e produtividade de biomassa (Pmax) (125,9 ± 5,3 mg.L-1.d-1) foram observadas no ensaio com
a menor vazão específica (0,05 vvm) e o difusor cortina porosa. Os maiores resultados de taxa
de biofixação de CO2 (Tco2máx) e eficiência de utilização de CO2 (Eco2máx) foram observados
na vazão de 0,05 vvm para difusores porosos (pedra sinterizada, cortina porosa e madeira
porosa). A máxima concentração de proteínas (78,6 ± 0,1 % m.m"1) na biomassa foi verificada
no ensaio com a madeira porosa e vazão de 0,05 vvm. Os teores de carboidratos e lipídios
apresentaram incremento de 26 % e redução de 21 %, respectivamente, com aumento da
vazão (0,3 vvm) no ensaio com a cortina porosa. O sistema de MFO com agitação por
borbulhamento de ar na vazão de 0,05 vvm promoveu maior acúmulo de carbono inorgânico
dissolvido (CID) no meio (127,4 ± 6,1 mg.L-1) e também maiores resultados de Pmáx (131,8 ±
1,9 mg.L-1.d-1), TcO2max (231,6 ± 2,1 mg.L1.d1) e Eco2max (86,2 ± 0,8 % m.m"1) quando
comparados ao CT na mesma vazão. O ensaio CT na vazão de ar de 0,3 vvm apresentou
maior concentração de lipídios (11,9 ± 0,6 % m.m-1). A aplicação de menor vazão de ar no
ensaio com MFO proporcionou aumento de 58 % no teor de lipídios da biomassa de
Spirulina. Com os resultados obtidos foi possível verificar que a aplicação de difusores
porosos e sistema de MFO concomitantemente com a menor vazão no cultivo de Spirulina
podem resultar em maiores produtividades de biomassa e taxas de biofixação de CO2,
contribuindo com redução de custos de processo para a produção de biomassa, bem como
para a atenuação das emissões deste gás de efeito estufa para atmosfera.
Carbon dioxide (CO2) is regarded as one of the most important greenhouse gases (GHG). CO2 emissions from fossil fuels, especially from the combustion of coal contributes to global warming becoming a major political issue in the fields of science, environment, and economy in current years. In this context, microalgae can capture the CO2, contributing to the reduction of greenhouse gases and generating biomass for various applications. The aim of this study was to promote CO2 biofixation efficiency increase by Spirulina sp. LEB 18. To this end, the work was divided into two stage, the first performance was evaluated four settings diffusers (sintered stone, porous curtain, perforated ring and porous wood) and specific flow rates of feed gas stream (0.05 and 0.3 vvm) the CO2 transfer to the liquid medium, CO2 biofixation and the composition of the Spirulina produced biomass. In a second stage, a system composed of hollow fiber membranes (HFM) to CO2 feed in the Spirulina cultivation under two modes of stirring was developed. The system was evaluated for CO2 biofixation, growth kinetics and composition of the biomass produced. This was compared to assays with sintered stone (control assay, CA). The CO2 transfer efficiency (&) (26.0 %) maximum and biomass productivity maximum (Pmax) (125.9 ± 5.3 mg L-1 d1) were observed in the assay with the lowest specific flow rate (0.05 vvm) and the porous diffuser curtain. The highest rate results CO2 biofixation (TCO2max) and CO2 use efficiency (Eco2max) were observed at a flow rate of 0.05 vvm for porous diffusers (sintered stone, porous curtain and porous wood). The maximum protein concentration (78.6 ± 0.1% w w1) in biomass was observed in the assay with the porous wood and flow of 0.05 vvm. The carbohydrate and lipids showed an increase of 26 % and 21 % reduction, respectively, with flow rate increasing (0.3 vvm) on assay the porous curtain. The HFM system stirred by bubbling air at a flow rate of 0.05 vvm provided the concentration of dissolved inorganic carbon (DIC) in the medium (127.4 ± 6.1 mg L-1) and also higher results Pmax (131.8 ± 1.9 mg L1 d-1), TCO2max (231.6 ± 2.1 mg L1 d1) and Eco2max (86.2 ± 0.8 % w w1) compared to CA in the same flow. The CA the air flow rate of 0.3 vvm showed higher lipid content (11.9 ± 0.6 % w w1). The application of lower air flow in the assay with HFM provided 58% increase in lipid content of the Spirulina biomass. It was possible with the obtained results to check that application of porous diffusers and HFM system concurrently with the lowest flow in the Spirulina cultivation may result in highest biomass productivity and CO2 biofixation rates, contributing to cost reduction process for producing biomass, as well as to mitigate emissions of this greenhouse gas to the atmosphere.
Carbon dioxide (CO2) is regarded as one of the most important greenhouse gases (GHG). CO2 emissions from fossil fuels, especially from the combustion of coal contributes to global warming becoming a major political issue in the fields of science, environment, and economy in current years. In this context, microalgae can capture the CO2, contributing to the reduction of greenhouse gases and generating biomass for various applications. The aim of this study was to promote CO2 biofixation efficiency increase by Spirulina sp. LEB 18. To this end, the work was divided into two stage, the first performance was evaluated four settings diffusers (sintered stone, porous curtain, perforated ring and porous wood) and specific flow rates of feed gas stream (0.05 and 0.3 vvm) the CO2 transfer to the liquid medium, CO2 biofixation and the composition of the Spirulina produced biomass. In a second stage, a system composed of hollow fiber membranes (HFM) to CO2 feed in the Spirulina cultivation under two modes of stirring was developed. The system was evaluated for CO2 biofixation, growth kinetics and composition of the biomass produced. This was compared to assays with sintered stone (control assay, CA). The CO2 transfer efficiency (&) (26.0 %) maximum and biomass productivity maximum (Pmax) (125.9 ± 5.3 mg L-1 d1) were observed in the assay with the lowest specific flow rate (0.05 vvm) and the porous diffuser curtain. The highest rate results CO2 biofixation (TCO2max) and CO2 use efficiency (Eco2max) were observed at a flow rate of 0.05 vvm for porous diffusers (sintered stone, porous curtain and porous wood). The maximum protein concentration (78.6 ± 0.1% w w1) in biomass was observed in the assay with the porous wood and flow of 0.05 vvm. The carbohydrate and lipids showed an increase of 26 % and 21 % reduction, respectively, with flow rate increasing (0.3 vvm) on assay the porous curtain. The HFM system stirred by bubbling air at a flow rate of 0.05 vvm provided the concentration of dissolved inorganic carbon (DIC) in the medium (127.4 ± 6.1 mg L-1) and also higher results Pmax (131.8 ± 1.9 mg L1 d-1), TCO2max (231.6 ± 2.1 mg L1 d1) and Eco2max (86.2 ± 0.8 % w w1) compared to CA in the same flow. The CA the air flow rate of 0.3 vvm showed higher lipid content (11.9 ± 0.6 % w w1). The application of lower air flow in the assay with HFM provided 58% increase in lipid content of the Spirulina biomass. It was possible with the obtained results to check that application of porous diffusers and HFM system concurrently with the lowest flow in the Spirulina cultivation may result in highest biomass productivity and CO2 biofixation rates, contributing to cost reduction process for producing biomass, as well as to mitigate emissions of this greenhouse gas to the atmosphere.
Descrição
Dissertação (Mestrado)
Palavras-chave
Difusores, Dióxido de carbono, Spirulina, Transferência de massa, Vazão, Carbon dioxide, Diffusers, Flow rate, Mass transference
Citação
MORAES, Luiza. Aumento da eficiência de biofixação de CO2 por microalgas. 2014. 130 f. Dissertação (Mestrado em Engenharia e Ciência de Alimentos) - Programa de Pós-graduação em Engenharia e Ciência de Alimentos, Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande, 2014.
