Determinação das curvas de fadiga em uniões soldadas do aço inoxidável duplex S31803
Resumo
Devido à constante evolução ocorrida nas últimas décadas, atualmente estão disponíveis no mercado ligas de aços inoxidáveis que conciliam características de elevada resistência à corrosão com boa soldabilidade e resistência mecânica. Consequentemente, tem havido aumento expressivo no emprego de tais ligas como material de base de sistemas ou componentes estruturais. De forma geral, o ponto crítico de estruturas construídas em aço são suas uniões, soldadas ou parafusadas, as quais acabam por sofrer carregamentos variáveis em operação, decorrentes dos deslocamentos de pessoas ou veículos, da presença sazonal de neve e, por fim, associados a efeitos aerodinâmicos – ventos e furacões – ou hidrodinâmicos – ondas e marés. Em decorrência disso, o mecanismo de falha mais comum, para o qual a estrutura deve ser dimensionada, é a fadiga nas uniões. Cada tipo de união – parafusada, soldada ou por adesivos – apresenta características intrínsecas, porém, no caso de juntas soldadas, o procedimento de projeto deve ser particularmente criterioso. Nesse caso, o comportamento em fadiga é influenciado pela presença de tensões residuais e de defeitos ou descontinuidades, oriundos do próprio processo de soldagem, bem como pelo efeito geométrico de concentração de tensões associado à forma irregular dos cordões. Nesse contexto, o presente trabalho visa obter as curvas de fadiga de uma união soldada de topo com carregamento transversal ao cordão, fabricada em aço inoxidável duplex S31803, para três condições distintas: a) corpos de prova soldados, b) corpos de prova soldados com os reforços dos cordões de solda removidos e c) corpos de prova sem solda. Após obtidas as curvas, as mesmas foram comparadas com as normas Eurocode 3 - seção 1.9 (1991) e AWS D1.1 (2010) e com as recomendações de soldagem do IIW (HOBBACHER, 2008). Para tal, tiras de 4,2 mm do aço inoxidável duplex S31803 foram unidas em passe único por processo GMAW, no sentido transversal ao sentido de laminação. Posteriormente, as placas soldadas foram usinadas para conferir a forma final dos corpos de prova, seguindo as normas que guiam a fabricação de corpos de prova para ensaios de fadiga. Após a usinagem para definição do formato, os corpos de prova foram separados de forma aleatória, e um grupo foi novamente usinado para efetuar a remoção do reforço. Para evidenciar a qualidade da união, foram realizados ensaios de resistência mecânica e metalográficos. Evidenciada a qualidade da união, os corpos de prova foram submetidos a ensaios de fadiga com carga repetida em máquina servohidráulica, para determinação dos diagramas S-N. Para as três condições, os resultados encontrados foram superiores aos valores fornecidos pelas normas e recomendações. Os corpos de prova que tiveram o reforço removido apresentaram elevado incremento da vida útil, aproximando-se do comportamento em fadiga do material em bruto. Conclui-se que, no caso de uniões de topo, a retirada dos reforços de face e de raiz proporciona grande incremento na vida útil. Por fim, o estudo mostrou indícios que, devido às suas características distintas, os aços inoxidáveis apresentam comportamento em fadiga superior aos demais aços estruturais ferríticos ou bainíticos e, portanto, deveriam apresentar dados próprios nas normas que abordam o dimensionamento de uniões soldadas.
As a result of the constant evolution occurred along last decades, stainless steel alloys which combine high corrosion resistance with good weldability and mechanical strength characteristics are nowadays commercially available. Consequently, a significant increase in the use of such alloys as base material of structural components or systems is in course. In general, the critical point of steel built structures are the connections, usually welded or screwed, which are subjected to variable loads in operation, as a result of people or vehicles displacement and presence of snow and any other seasonable loading, as well as aerodynamic and hydrodynamic effects (winds, hurricanes, waves and tides). Therefore, the most common failure mechanism, for which the structure must be dimensioned, is fatigue in the joints. Each class of structural connection – bolted, welded or even by adhesion – presents intrinsic characteristics. However, in the case of welded joints, the assessment procedure must be particularly mindful. In that case, fatigue behavior is influenced by the presence of residual stresses and defects or discontinuities, emerged from the welding process itself, as well as by the geometric effect of stress concentration related to the irregular bead or fillet shape. In this context, this paper presents S-N curves of butt-welded joints of duplex stainless steel S31803 specimens, with applied loads transverse to the bead. Three different configurations were tested: a) as-welded specimens, b) welded specimens with face and root reinforcements removed and c) base metal (no- welded) specimens. Afterwards, these curves are compared with standard data taken from Eurocode 3 - Section 1.9 (1991) and AWS D1.1 (2010), as well as the welding recommendations of IIW (HOBBACHER, 2008). For specimens preparation, 4.2 mm thick original strips of duplex stainless steel S31803 were welded in a single pass through a GMAW process, with bead positioned transversely to rolling direction. Subsequently, the welded plates were cut and the resulting strips were machined to the final specimen shape, dictated by fatigue tests standards. After this process, three samples composed by randomly chosen specimens were separated. Specimens of one of these samples have the face and root reinforcements removed by a machining and sanding process. To ensure the beads presented an appropriate quality level, mechanical strength and metallographic tests were performed. So the specimens were subjected to fatigue tests in a servo-hydraulic machine for S-N diagrams determination. For the three test samples, the achieved specimens life was substantially higher than the expected values provided by the standards and recommendations. Particularly, specimens with reinforcements removed presented a very high response, near the base metal fatigue behavior. This last result indicates that the removal of face and root reinforcements in butt-joints provides a large increase in fatigue life. Finally, the study showed evidences that, due to its distinct characteristics, stainless steels present superior fatigue behavior than ordinary ferritic or bainitic structural steel. Therefore, this class of steels should own its proper set of data inside the standards for welded joints assessment.
As a result of the constant evolution occurred along last decades, stainless steel alloys which combine high corrosion resistance with good weldability and mechanical strength characteristics are nowadays commercially available. Consequently, a significant increase in the use of such alloys as base material of structural components or systems is in course. In general, the critical point of steel built structures are the connections, usually welded or screwed, which are subjected to variable loads in operation, as a result of people or vehicles displacement and presence of snow and any other seasonable loading, as well as aerodynamic and hydrodynamic effects (winds, hurricanes, waves and tides). Therefore, the most common failure mechanism, for which the structure must be dimensioned, is fatigue in the joints. Each class of structural connection – bolted, welded or even by adhesion – presents intrinsic characteristics. However, in the case of welded joints, the assessment procedure must be particularly mindful. In that case, fatigue behavior is influenced by the presence of residual stresses and defects or discontinuities, emerged from the welding process itself, as well as by the geometric effect of stress concentration related to the irregular bead or fillet shape. In this context, this paper presents S-N curves of butt-welded joints of duplex stainless steel S31803 specimens, with applied loads transverse to the bead. Three different configurations were tested: a) as-welded specimens, b) welded specimens with face and root reinforcements removed and c) base metal (no- welded) specimens. Afterwards, these curves are compared with standard data taken from Eurocode 3 - Section 1.9 (1991) and AWS D1.1 (2010), as well as the welding recommendations of IIW (HOBBACHER, 2008). For specimens preparation, 4.2 mm thick original strips of duplex stainless steel S31803 were welded in a single pass through a GMAW process, with bead positioned transversely to rolling direction. Subsequently, the welded plates were cut and the resulting strips were machined to the final specimen shape, dictated by fatigue tests standards. After this process, three samples composed by randomly chosen specimens were separated. Specimens of one of these samples have the face and root reinforcements removed by a machining and sanding process. To ensure the beads presented an appropriate quality level, mechanical strength and metallographic tests were performed. So the specimens were subjected to fatigue tests in a servo-hydraulic machine for S-N diagrams determination. For the three test samples, the achieved specimens life was substantially higher than the expected values provided by the standards and recommendations. Particularly, specimens with reinforcements removed presented a very high response, near the base metal fatigue behavior. This last result indicates that the removal of face and root reinforcements in butt-joints provides a large increase in fatigue life. Finally, the study showed evidences that, due to its distinct characteristics, stainless steels present superior fatigue behavior than ordinary ferritic or bainitic structural steel. Therefore, this class of steels should own its proper set of data inside the standards for welded joints assessment.
Descrição
Dissertação (mestrado)
Palavras-chave
Uniões soldadas, Fadiga, Aço inoxidável duplex S31803, Welded joints, Fatigue, Duplex stainless steel S31803
Citação
ALMEIDA, William Ramires. Determinação das curvas de fadiga em uniões soldadas do aço inoxidável duplex S31803. 2016. 104f. Dissertação (mestrado) - Programa de Pós-Graduação em Engenharia Mecânica, Escola de Engenharia, Universidade Federal do Rio Grande, Rio Grande, 2016.
