Aplicação da análise wavelet para detecção de transições de regime em leito fluidizado
Resumo
A fluidização é um processo onde partículas sólidas adquirem um comportamento
semelhante ao de um fluído em ebulição devido ao fluxo ascendente de um gás ou líquido.
Devido à este fluxo ascendente do fluído através do leito de sólidos, diferentes tipos de
regimes fluidodinâmicos podem ser observados. As variações dos tipos de regimes estão
associadas a velocidade do fluído, características físicas das partículas e condições de
operação da coluna. O conhecimento dos regimes fluidodinâmicos é crucial para garantir
a eficiência e a segurança das operações, sendo necessário a aplicadação de uma
ferramente de análise de dados eficiente para capturar a dinâmica complexa desses
sistemas. Nesse contexto, este estudo tem como objetivo empregar as transformadas de
Fourier e wavelet para analisar medidas de flutuacao de pressao obtidas em diferentes
regimes fluidodinâmicos de um leito fluidizado gás-sólido, utilizando os seguintes
solidos: CMC - Celulose Microcristalina (dp=329um; p=0,98g.cm3), Areia I (dp=193um;
p=2,48g.cm3) e Areia II (dp=727um; p=2,45g.cm3). Os sólidos empregados foram
classificados como Geldart B (CMC e Areia I) e B/D (Areia II), e os experimentos foram
realizados em duas condições diferentes de relação altura de leito fixo (H) e diâmetro de
coluna (D) (H/D=1/1 e H/D=2/1). Um amplo conjunto de análises foi utilizado para
identificação dos regimes fluidodinâmicos e suas transições. Para alcançar esse objetivo,
foram aplicadas técnicas como espectros de frequência, frequências e amplitudes
dominantes, distribuição de energia dos subsinais, índice de homogeneidade (HI) e
análise de entropia. A análise de Fourier permitiu decompor os dados de pressão em suas
componentes de frequência, sendo possível identificar e compreender as frequências
dominantes das oscilações e correlacionar com os padrões de regimes de contato no leito
fluidizado. Os sólidos com classificação de Geldart B apresentaram as mesmas variações
de regimes sob as mesmas condições de operação. Para relação H/D = 1/1, as seguintes
transições foram observadas: leito fixo, borbulhante múltiplo e borbulhante explosivo. Na
relação H/D = 2/1, as seguintes transições foram observadas: leito fixo, borbulhante
múltiplo, slugging e borbulhante explosivo. O sólido com classificação B/D apresentou
transição de regimes diferentes. Para H/D=1/1: leito fixo, borbulhante simples e
borbulhante explosivo. Para H/D=2/1: leito fixo, borbulhante simples, slugging e
borbulhante explosivo. A transformada de Wavelet trouxe uma vantagem significativa na
análise dos dados através da aplicação da função Symmlets 13, sendo possível identificar
mudanças bruscas nos dados de pressão que estavam relacionadas a transições de regimes.
Valores máximos de HI e mínimos de entropia foram obtidos nas transições do regime
borbulhante simples para borbulhante múltiplo ou slugging. Em relação a decomposição
dos subsinais na condição H/D= 1/1, constatou-se para os sólidos do tipo B que a maior
razão de energia foi em D4 e para o tipo B/D foi em D5. Com o aumento da altura do
leito, H/D=2/1, sólidos do tipo B apresentaram valores maiores de energia em D5 e B/D
em D6. Os subsinais com maior razão de energia foram condizentes com a faixa de
frequência dominante obtida na análise de Fourier.
Fluidization is a process where solid particles acquire a behavior similar to that of a boiling fluid due to the upward flow of a gas or liquid. Due to this upward flow of fluid through the bed of solids, different types of fluid dynamic regimes can be observed. Variations in the types of regimes are associated with the fluid velocity, physicochemical characteristics of the particles and column operating characteristics. Knowledge of fluid dynamic regimes is crucial to guarantee the efficiency and safety of operations, requiring the application of an efficient data analysis tool to capture the complex dynamics of these systems. In this context, this study aims to employ Fourier and wavelet transforms to analyze pressure data obtained in different fluid dynamic regimes of a gas-solid fluidized bed, using the following solids: MCC - microcrystalline cellulose (dp=329um; p=0.98g.cm-3), Sand I (dp=193um; p=2.48g.cm-3) and Sand II (dp=727um; p=2.45g.cm-3). The solids used were classified as Geldart B (CMC and Sand I) and B/D (Sand II), and the experiments were carried out under two different conditions of fixed bed height (H) and column diameter (D) (H/D=1/1 and H/D=2/1). A broad set of analyzes was used to identify fluid dynamic regimes and their transitions. To achieve this objective, techniques such as frequency spectra, dominant frequencies and amplitudes, energy distribution of subsignals, homogeneity index (HI) and entropy analysis were applied. Fourier analysis made it possible to decompose the pressure data into its frequency components, making it possible to identify and understand the dominant frequencies of the oscillations and correlate them with the flow patterns in the fluidized bed. Solids with Geldart B classification showed the same regime variations under the same operating conditions. For H/D ratio = 1/1, the following transitions were observed: fixed bed, multiple bubbling and explosive bubbling. At the ratio H/D = 2/1, the following transitions were observed: fixed bed, multiple bubbling, slugging and explosive bubbling. The solid classified B/D showed a transition between different regimes. For H/D=1/1: fixed bed, simple bubbling and explosive bubbling. For H/D=2/1: fixed bed, simple bubbling, slugging and explosive bubbling. The Wavelet transform brought a significant advantage in data analysis through the application of the Symmlets 13 function, making it possible to identify sudden changes in the pressure data that were related to regime transitions. Maximum HI and minimum entropy values were obtained in the transitions from multiple bubbling to single bubbling or slugging regimes. Regarding the decomposition of subsignals in the HL/DL= 1/1 condition, it was found for type B solids that the highest energy ratio was in D4 and for type B/D it was in D5. With increasing bed height, HL/DL=2/1, type B solids showed higher energy values in D5 and B/D in D6. The subsnals with the highest energy ratio match the dominant frequency range obtained in the Fourier analysis.
Fluidization is a process where solid particles acquire a behavior similar to that of a boiling fluid due to the upward flow of a gas or liquid. Due to this upward flow of fluid through the bed of solids, different types of fluid dynamic regimes can be observed. Variations in the types of regimes are associated with the fluid velocity, physicochemical characteristics of the particles and column operating characteristics. Knowledge of fluid dynamic regimes is crucial to guarantee the efficiency and safety of operations, requiring the application of an efficient data analysis tool to capture the complex dynamics of these systems. In this context, this study aims to employ Fourier and wavelet transforms to analyze pressure data obtained in different fluid dynamic regimes of a gas-solid fluidized bed, using the following solids: MCC - microcrystalline cellulose (dp=329um; p=0.98g.cm-3), Sand I (dp=193um; p=2.48g.cm-3) and Sand II (dp=727um; p=2.45g.cm-3). The solids used were classified as Geldart B (CMC and Sand I) and B/D (Sand II), and the experiments were carried out under two different conditions of fixed bed height (H) and column diameter (D) (H/D=1/1 and H/D=2/1). A broad set of analyzes was used to identify fluid dynamic regimes and their transitions. To achieve this objective, techniques such as frequency spectra, dominant frequencies and amplitudes, energy distribution of subsignals, homogeneity index (HI) and entropy analysis were applied. Fourier analysis made it possible to decompose the pressure data into its frequency components, making it possible to identify and understand the dominant frequencies of the oscillations and correlate them with the flow patterns in the fluidized bed. Solids with Geldart B classification showed the same regime variations under the same operating conditions. For H/D ratio = 1/1, the following transitions were observed: fixed bed, multiple bubbling and explosive bubbling. At the ratio H/D = 2/1, the following transitions were observed: fixed bed, multiple bubbling, slugging and explosive bubbling. The solid classified B/D showed a transition between different regimes. For H/D=1/1: fixed bed, simple bubbling and explosive bubbling. For H/D=2/1: fixed bed, simple bubbling, slugging and explosive bubbling. The Wavelet transform brought a significant advantage in data analysis through the application of the Symmlets 13 function, making it possible to identify sudden changes in the pressure data that were related to regime transitions. Maximum HI and minimum entropy values were obtained in the transitions from multiple bubbling to single bubbling or slugging regimes. Regarding the decomposition of subsignals in the HL/DL= 1/1 condition, it was found for type B solids that the highest energy ratio was in D4 and for type B/D it was in D5. With increasing bed height, HL/DL=2/1, type B solids showed higher energy values in D5 and B/D in D6. The subsnals with the highest energy ratio match the dominant frequency range obtained in the Fourier analysis.
Descrição
Dissertação (Mestrado)
Palavras-chave
Fluidização, Fourier, Wavelet, Entropia, Análise de multiresolução, Fluidization, Entropy, Multiresolution Analisys
Citação
FERREIRA, Graziela Lemos. Aplicação da análise wavelet para detecção de transições de regime em leito fluidizado. 2023. 82 f. Dissertação (Mestrado) – Programa de Pós-Graduação em Engenharia Química, Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande, 2023.
