Processo de elutriação para separação de microplásticos presentes em águas lagunares
Resumo
Técnicas para separação de microplásticos (MPs) estão sendo estudadas devido aos
efeitos letais e sub-letais que essas partículas em escala de 1-5000 um causam a biota, pela fácil
ingestão e disponibilidade deste material no sistema aquático. A elutriação é uma técnica
promissora para separação sólido-sólido de materiais particulados, porém pouco estudada para
separação sólido-líquido o que impulsiona o desenvolvimento de pesquisas que envolvam seus
princípios na separação dos MPs de águas superficiais. Sendo assim, o objetivo deste trabalho
é estudar o processo de elutriação para arraste de MPs em sistema controlado e aplicar as
condições estabelecidas na separação de materiais em amostras de águas superficiais da Laguna
dos Patos (LP) e Lago Guaíba (LG). Para isso foi realizado um levantamento bibliográfico na
base de dados da Science Direct sobre ocorrência de MPs em sistemas de águas doces, onde
identificou-se a presença dos polímeros de Polietileno, Poliamida 6.6, Poliamida 6, Policloreto
de vinila, Poliestireno, Policarbonato, Acrilonitrila-butadieno-estireno, Polipropileno,
Polibutileno tereftalato, Polietileno tereftalato e Poliuretano. Estes polímeros padrões foram
adquiridos, moídos e peneirados até atingir a faixa granulométrica de 106-1700 um. Através
das Equações de Stokes e Correlações de Coelho & Massarani foram calculadas as velocidades
terminais teoricas e o número de Reynolds para esta faixa granulométrica e correspondem a
0,03-97 mm/s e 0,004-184,52, respectivamente. Um elutriador de vidro com altura de 0,96 m,
diâmetro de 0,02 m e equipado com sistema de bombeamento capaz de variar as vazões de água
entre 2,28x107-1,37x106 m3/s foi utilizado para separar os MPs na faixa granulométrica entre
128-1700 um. Assim, verificou-se que ao aplicar a elutriacão para separacão de MPs na faixa
granulométrica entre 106-150 um obteve-se máxima eficiência de 33,3% em volume de água
elutriada de 2400 mL. As amostras de aguas lagunares superficiais coletadas na LP e no LG
foram analisadas em microscópico óptico, onde visualizou-se partículas de diâmetros
equivalentes médios de 8,22 um e 10,40 um e esfericidade de 0,79 e 0,83, respectivamente. As
condições operacionais de elutriação estabelecidas para os polímeros padrões foram aplicadas
as amostras da LP e do LG a fim de separar os MPs presentes nestes ambientes. Foram
realizadas análises de microscopia óptica e espectroscopia Raman combinado a Surface
Enhance Raman Scattering (SERS) nas amostras elutriadas e observou-se que ocorreu a
separação de partículas para diferentes velocidades da água.
Techniques for separating microplastics (MPs) are being studied due to the lethal and sub-lethal effects that these particles on the scale of 1-5000 um cause to biota, owing to the easy ingestion and availability of this material in the aquatic system. Elutriation is a promising technique for solid-solid separation of particulate materials but is seldom studied for solid- liquid separation, which drives the development of research involving its principles in the separation of MPs from surface waters. Therefore, this work aims to study the elutriation process to carry MPs in a controlled system and apply the conditions established for the separation of materials in surface water samples from Patos Lagoon (PL) and Guaiba Lake (GL). For this, a bibliographic survey was carried out in the Science Direct database on the occurrence of MPs in freshwater systems, where the presence of polymers such as Polyethylene, Polyamide 6.6, Polyamide 6, Polyvinylchloride, Polystyrene, Polycarbonate, Acrylonitrile Styrene butadiene, Polypropylene, Polybutylene terephthalate, Polyethylene terephthalate, and Polyurethane were identified. These standard polymers were purchased, ground and sieved until reaching the granulometric range of 106-1700 um. Through the Stokes equations and Coelho & Massarani correlations, the theoretical terminal velocities and the Reynolds number were calculated for this granulometric range and corresponded to 0.03-97 mm/s and 0.004-184.52, respectively. A glass elutriator with a height of 0.96 m, a diameter of 0.02 m, and equipped with a pumping system capable of varying the water flows between 2.28x107-1.37x106 m3/s was used to separate the MPs in the granulometric range between 128-1700 um. Thus, it was found that when applying elutriation to separate MPs in the granulometric range between 106-150 um, maximum efficiency of 33.3% in the volume of elutriated water of 2400 mL was obtained. The superficial lagoon water samples collected in the PL and GL were analyzed under an optical microscope, where particles with average equivalent diameters of 8.22 um and 10.40 um and sphericity of 0.79 and 0.83, respectively, were visualized. The elutriation operating conditions established for the standard polymers were applied to the PL and GL samples to separate the MPs present in these environments. Optical microscopy and Raman spectroscopy analyzes were performed combined with Surface Enhance Raman Scattering (SERS) on the elutriated samples and it was observed that the separation of particles occurred at different fluid velocities.
Techniques for separating microplastics (MPs) are being studied due to the lethal and sub-lethal effects that these particles on the scale of 1-5000 um cause to biota, owing to the easy ingestion and availability of this material in the aquatic system. Elutriation is a promising technique for solid-solid separation of particulate materials but is seldom studied for solid- liquid separation, which drives the development of research involving its principles in the separation of MPs from surface waters. Therefore, this work aims to study the elutriation process to carry MPs in a controlled system and apply the conditions established for the separation of materials in surface water samples from Patos Lagoon (PL) and Guaiba Lake (GL). For this, a bibliographic survey was carried out in the Science Direct database on the occurrence of MPs in freshwater systems, where the presence of polymers such as Polyethylene, Polyamide 6.6, Polyamide 6, Polyvinylchloride, Polystyrene, Polycarbonate, Acrylonitrile Styrene butadiene, Polypropylene, Polybutylene terephthalate, Polyethylene terephthalate, and Polyurethane were identified. These standard polymers were purchased, ground and sieved until reaching the granulometric range of 106-1700 um. Through the Stokes equations and Coelho & Massarani correlations, the theoretical terminal velocities and the Reynolds number were calculated for this granulometric range and corresponded to 0.03-97 mm/s and 0.004-184.52, respectively. A glass elutriator with a height of 0.96 m, a diameter of 0.02 m, and equipped with a pumping system capable of varying the water flows between 2.28x107-1.37x106 m3/s was used to separate the MPs in the granulometric range between 128-1700 um. Thus, it was found that when applying elutriation to separate MPs in the granulometric range between 106-150 um, maximum efficiency of 33.3% in the volume of elutriated water of 2400 mL was obtained. The superficial lagoon water samples collected in the PL and GL were analyzed under an optical microscope, where particles with average equivalent diameters of 8.22 um and 10.40 um and sphericity of 0.79 and 0.83, respectively, were visualized. The elutriation operating conditions established for the standard polymers were applied to the PL and GL samples to separate the MPs present in these environments. Optical microscopy and Raman spectroscopy analyzes were performed combined with Surface Enhance Raman Scattering (SERS) on the elutriated samples and it was observed that the separation of particles occurred at different fluid velocities.
Descrição
Dissertação (Mestrado)
Palavras-chave
Águas lagunares, Microplásticos, Separação, Eficiência, Lagoon waters, Microplastics, Separation, Efficiency
Citação
ROSSATTO, Andressa. Processo de elutriação para separação de microplásticos presentes em águas lagunares. 2022. 164 f. Dissertação (Mestrado) – Programa de Pós-Graduação em Engenharia Química, Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande, 2022.
