Estudo numérico de um escoamento turbulento com convecção forçada incidindo sobre um arranjo triangular de corpos rombudos
Resumo
Este trabalho consiste na avaliação numérica de um escoamento turbulento, transiente, bidimensional, incompressível e com convecção forçada que incide sobre um arranjo triangular de corpos rombudos quadrados de aresta D. A geometria do problema é avaliada com o método Design Construtal. O problema possui duas restrições, a primeira dada pela soma das áreas dos corpos rombudos e a segunda referente à área de ocupação máxima do arranjo, que neste caso é 6D × 6D, além de dois graus de liberdade: SL/D (razão da distância longitudinal entre o centro do corpo rombudo frontal e o centro dos corpos rombudos posteriores, e a dimensão de suas arestas) e ST/D (razão da distância transversal entre o centro dos corpos rombudos posteriores e a dimensão de suas arestas). Em todas as simulações serão considerados números de Reynolds e Prandtl iguais à ReD = 22.000 e Pr = 0,71 respectivamente. As equações temporais médias de conservação da massa, quantidade de movimento e energia são solucionadas através do Método dos Volumes Finitos, pelo software de CFD Ansys® Fluent® e a turbulência é resolvida através da modelagem clássica da turbulência (RANS - Reynolds Averaged Navier-Stokes) com fechamento através do modelo SST -k-w. O objetivo do estudo é avaliar como a variação da geometria influencia o coeficiente de arrasto (CD) e o número de Nusselt (NuD) entre os corpos rombudos e o escoamento circundante. Também se avalia o coeficiente de sustentação (CL) e o número de Strouhal (St) para análise do desprendimento de vórtices no escoamento. Foi realizada uma avaliação da modelagem matemática e um estudo de estratégias de geração de malha capaz de validar/verificar o modelo numérico. Observou-se que o estudo da turbulência, mesmo de forma bidimensional, com a modelagem SST - k-w, é capaz de representar os fenômenos associados ao problema proposto de forma consistente, desde que um grande refinamento local nas regiões de parede seja implementado. Uma malha não estruturada com refinamento local totalmente estruturado foi utilizada para verificar/validar parâmetros médios em um escoamento turbulento com convecção forçada sobre um corpo rombudo. A comparação com a literatura para CD, NuD e St médios no espaço e tempo quando o escoamento atinge um regime estabilizado apresentaram desvios tão baixos quanto 0,43%, 0,79% e 0,56% respectivamente. Na avaliação geométrica do arranjo, constatou-se que o melhor caso fluidodinâmico reduziu o CD em até 73,5% comparado ao pior caso, já no estudo térmico, o caso ótimo aumentou o NuD em 29,0%. Devido a isto, a análise multiobjetivo apontou para SL/D = 5,0 e ST/D = 2,0 como as razões ótimas do arranjo, coincidindo com o caso ótimo para o objetivo fluidodinâmico.
This work consists in the numerical evaluation of a turbulent, transient, two-dimensional, incompressible and forced convective cross flow on a triangular array of square shaped bluff bodies. The geometry of the problem is evaluated with the Constructal Design method. The problem has two restrictions, the first given by the sum of the bluff bodies area, and the second referring to the máx occupation area of the array, 6D × 6D in this case. It also has two degrees of freedom: SL/D (ratio between the longitudinal pitch of the center of the frontal bluff body and the center of the posterior bluff bodies, and the size of its edges) and ST/D (ratio of the transverse pitch between the center of the posterior bluff bodies and the size of its edges). In all simulations Reynolds and Prandtl numbers are maintained constant at ReD = 22.000 and Pr = 0,71 respectively. The equations of conservation of mass, momentum and energy are solved using the Finite Volume Method using Ansys® Fluent® CFD, and the turbulence is solved through the SST - k-w modeling. The objective of this study is to evaluate how the variation of the geometry influences the drag coefficient (CD) and the Nusselt number (NuD) between the bluff bodies and the surrounding flow. The lift coefficient (CL) and the Strouhal number (St) are also evaluated for the analysis of vortex shedding in the flow. An evaluation of the mathematical modeling and a study of mesh generation strategies capable of validating/verifying the numerical model have been carried out. It was observed that the study of turbulence, even in a two-dimensional way, with the SST - k-w modeling is able to represent the phenomena associated to the proposed problem in a consistent way, provided that, a great local refinement in the wall regions is implemented. An unstructured mesh with fully structured local refinement was used to verify/validate averaged parameters in a forced convective turbulent cross flow with a bluff body. The comparison with the literature for the mean CD, NuD and St values in space and time when the flow reaches a stabilized regime showed deviations as low as 0.43%, 0.79% and 0.56% respectively. In the geometric evaluation of the arrangement, it was verified that the best fluid dynamic case reduced CD by up to 73.5% compared to the worst case, whereas in the thermal study the optimum case increased NuD by 29.0%. Due to this, the multi-objective analysis pointed to SL/D = 5.0 and ST/D = 2.0 as the optimal ratios of the arrangement, coinciding with the optimal case for the fluid dynamics objective.
This work consists in the numerical evaluation of a turbulent, transient, two-dimensional, incompressible and forced convective cross flow on a triangular array of square shaped bluff bodies. The geometry of the problem is evaluated with the Constructal Design method. The problem has two restrictions, the first given by the sum of the bluff bodies area, and the second referring to the máx occupation area of the array, 6D × 6D in this case. It also has two degrees of freedom: SL/D (ratio between the longitudinal pitch of the center of the frontal bluff body and the center of the posterior bluff bodies, and the size of its edges) and ST/D (ratio of the transverse pitch between the center of the posterior bluff bodies and the size of its edges). In all simulations Reynolds and Prandtl numbers are maintained constant at ReD = 22.000 and Pr = 0,71 respectively. The equations of conservation of mass, momentum and energy are solved using the Finite Volume Method using Ansys® Fluent® CFD, and the turbulence is solved through the SST - k-w modeling. The objective of this study is to evaluate how the variation of the geometry influences the drag coefficient (CD) and the Nusselt number (NuD) between the bluff bodies and the surrounding flow. The lift coefficient (CL) and the Strouhal number (St) are also evaluated for the analysis of vortex shedding in the flow. An evaluation of the mathematical modeling and a study of mesh generation strategies capable of validating/verifying the numerical model have been carried out. It was observed that the study of turbulence, even in a two-dimensional way, with the SST - k-w modeling is able to represent the phenomena associated to the proposed problem in a consistent way, provided that, a great local refinement in the wall regions is implemented. An unstructured mesh with fully structured local refinement was used to verify/validate averaged parameters in a forced convective turbulent cross flow with a bluff body. The comparison with the literature for the mean CD, NuD and St values in space and time when the flow reaches a stabilized regime showed deviations as low as 0.43%, 0.79% and 0.56% respectively. In the geometric evaluation of the arrangement, it was verified that the best fluid dynamic case reduced CD by up to 73.5% compared to the worst case, whereas in the thermal study the optimum case increased NuD by 29.0%. Due to this, the multi-objective analysis pointed to SL/D = 5.0 and ST/D = 2.0 as the optimal ratios of the arrangement, coinciding with the optimal case for the fluid dynamics objective.
Descrição
Dissertação (mestrado)
Palavras-chave
Escoamento Turbulento, Convecção, Design Construtal, Cfd, Convection, Bluff Bodies, Turbulent Flow, Constructal Design, Corpos Rombudos
Citação
TEIXEIRA, Filipe Branco. Estudo numérico de um escoamento turbulento com convecção forçada incidindo sobre um arranjo triangular de corpos rombudos. 2017. 115f. Dissertação (mestrado) - Programa de Pós-Graduação em Engenharia Oceânica, Escola de Engenharia, Universidade Federal do Rio Grande, Rio Grande, 2017.
