Utilização de efluentes da combustão do carvão mineral no cultivo de microalgas e produção de biofertilizante
Resumo
A produção de microalgas vem sendo estudada para diversas aplicações, como produção de
alimentos, energia, fixação de dióxido de carbono e biofertilizantes. Entretanto, os elevados custos
com nutrientes para o cultivo destes micro-organismos podem gerar impasse e dificultar a
ampliação de escala. Neste contexto, o objetivo desta dissertação foi cultivar cianobactérias em
condições outdoor e menor concentração de nutrientes, selecionando as condições de cultivo para
obtenção de biofertilizante de microalgas, cultivadas com gás de combustão simulado e cinzas,
para aplicação em cultura de rúcula. Para isso, inicialmente foram utilizados os meios de cultivo
Zarrouk, BG-11 e Zarrouk modificado (com redução nas concentrações de nutrientes do meio
original) no cultivo outdoor, em biorreatores abertos tipo Raceway de 6 L, com as cianobactérias
Spirulina sp. LEB 18 e Synechococcus nidulans LEB 115. Posteriormente, a continuidade do
trabalho ocorreu com a produção de biofertilizante de solo para o cultivo de rúcula (Eruca vesicaria
ssp. sativa) a partir da biomassa de ambas as cepas estudadas, cultivada em meio de cultivo Zarrouk
modificado, condições outdoor, biorreatores Raceway, com adição de gás de combustão simulado
(contendo 10% de CO2, 100 ppm de NO2 e 40 ppm de cinzas). Na primeira etapa, os cultivos com
meio Zarrouk modificado proporcionaram para Spirulina sp. LEB 18, o menor tempo de geração
(2,10 d) e aumento de 226 % na concentração de carboidratos na biomassa obtida em relação a
produzida em meio de cultivo Zarrouk padrão, assim como foi obtida a maior produtividade de
biomassa de Synechococcus nidulans LEB 115 (0,19 g L-1
d
-1
) e aumento na concentração de
carboidratos em 160 %. Na segunda etapa foi verificada produtividade similar entre as duas cepas
estudadas (~0,10 g L-1
d
-1
), incremento significativo na concentração média de proteínas na
biomassa de Spirulina sp. LEB 18 mantida úmida (51,4 % m m-1
) e carboidratos na biomassa
liofilizada (51,7 % m m-1
). Nessa etapa, a combinação da biomassa úmida de Spirulina sp. LEB 18
produzida, combinada com 10% de fertilizante químicos (NPK), promoveu crescimento de rúcula
em 2,65 cm (14% menor em relação a cultivo com 100 % de NPK). Os resultados obtidos neste
trabalho demonstraram o potencial para a produção de biomassa microalgal em cultivo outdoor
com redução nutricional, assim como para a produção de biomassa, nessas condições e com
efluentes da geração termelétrica, como alternativa na diminuição do uso de fertilizantes químicos
para o cultivo de vegetais superiores.
The production of microalgae has been studied for several applications, such as food, energy and biofertilizers. However, the high cost of nutrients required for cultivating these microorganisms may generate lead to setbacks and decrease scale expansion. Hence, the aim of this dissertation was to cultivate cyanobacteria in outdoor conditions with less nutritional supplement, selecting the optimal cultivation conditions for obtaining microalgae biofertilizer. Such microalgae were grown with simulated flue gas and ash, for application in arugula culture. For this purpose, the culture media Zarrouk, BG-11 and modified Zarrouk (with reduced nutrient concentrations) were initially used in outdoor cultivation, in open 6-liter raceway bioreactors, with the cyanobacteria Spirulina sp. LEB 18 and Synechococcus nidulans LEB 115. Thereafter, the work continued focusing on the production of soil biofertilizer for arugula cultivation (Eruca vesicaria ssp. Sativa) obtained from the biomass of the studied microalga strains, both grown in modified Zarrouk medium, outdoor conditions, raceway bioreactors, with addition of simulated flue gas (containing 10% CO2, 100 ppm NO2 and 40 ppm ash). In the first part, Spirulina sp. LEB 18 cultures with modified Zarrouk medium showed the lowest generation time (2.10 d) and a 226% increase in the carbohydrate concentration from the obtained biomass in relation to that produced with standard Zarrouk culture medium. Besides that, modified Zarrouk showed the highest biomass productivity for Synechococcus nidulans LEB 115 (0.19 g L-1 d -1 ) and a160 % increase in the carbohydrate concentration. In the second part, similar biomass productivity was found between the two studied strains (~ 0.10 g L-1 d -1 ) and significant increase in the average protein concentration from the biomass of Spirulina sp. LEB 18 maintained moist (51.4% m m-1 ) and, also, carbohydrates in lyophilized biomass (51.7% m m-1 ). In this part, the wet Spirulina sp. LEB 18 biomass produced, combined with 10% chemical fertilizer (NPK), increased arugula growth by 2.65 cm (only 14% lower comparing to cultivation with 100% NPK). The results obtained herein highlighted the potential for microalgal biomass production in outdoor cultivation with nutritional reduction, as well as using effluents from thermoelectric generation, as an alternative to reduce the chemical fertilizers commonly used for cultivation of superior vegetables.
The production of microalgae has been studied for several applications, such as food, energy and biofertilizers. However, the high cost of nutrients required for cultivating these microorganisms may generate lead to setbacks and decrease scale expansion. Hence, the aim of this dissertation was to cultivate cyanobacteria in outdoor conditions with less nutritional supplement, selecting the optimal cultivation conditions for obtaining microalgae biofertilizer. Such microalgae were grown with simulated flue gas and ash, for application in arugula culture. For this purpose, the culture media Zarrouk, BG-11 and modified Zarrouk (with reduced nutrient concentrations) were initially used in outdoor cultivation, in open 6-liter raceway bioreactors, with the cyanobacteria Spirulina sp. LEB 18 and Synechococcus nidulans LEB 115. Thereafter, the work continued focusing on the production of soil biofertilizer for arugula cultivation (Eruca vesicaria ssp. Sativa) obtained from the biomass of the studied microalga strains, both grown in modified Zarrouk medium, outdoor conditions, raceway bioreactors, with addition of simulated flue gas (containing 10% CO2, 100 ppm NO2 and 40 ppm ash). In the first part, Spirulina sp. LEB 18 cultures with modified Zarrouk medium showed the lowest generation time (2.10 d) and a 226% increase in the carbohydrate concentration from the obtained biomass in relation to that produced with standard Zarrouk culture medium. Besides that, modified Zarrouk showed the highest biomass productivity for Synechococcus nidulans LEB 115 (0.19 g L-1 d -1 ) and a160 % increase in the carbohydrate concentration. In the second part, similar biomass productivity was found between the two studied strains (~ 0.10 g L-1 d -1 ) and significant increase in the average protein concentration from the biomass of Spirulina sp. LEB 18 maintained moist (51.4% m m-1 ) and, also, carbohydrates in lyophilized biomass (51.7% m m-1 ). In this part, the wet Spirulina sp. LEB 18 biomass produced, combined with 10% chemical fertilizer (NPK), increased arugula growth by 2.65 cm (only 14% lower comparing to cultivation with 100% NPK). The results obtained herein highlighted the potential for microalgal biomass production in outdoor cultivation with nutritional reduction, as well as using effluents from thermoelectric generation, as an alternative to reduce the chemical fertilizers commonly used for cultivation of superior vegetables.
Descrição
Dissertação (Mestrado)
Palavras-chave
Cianobactérias, Cultivo outdoor, Dióxido de carbono, Dióxido de enxofre, Rúcula, Arugula, Cyanobacteria, Carbon dioxide, Outdoor cultivation, Sulfur dioxide
Citação
FANKA, Letícia Schneider. Utilização de efluentes da combustão do carvão mineral no cultivo de microalgas e produção de biofertilizante. 2020. 128 f. Dissertação (Mestrado em Engenharia e Ciência de Alimentos) - Programa de Pós-graduação em Engenharia e Ciência de Alimentos, Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande, 2020.
