Purificação de xilanases de Aureobasidium pullulans CCT 1261 e sua aplicação na produção de xilo-oligossacarídeos
Resumo
Enzimas xilanolíticas estão envolvidas na hidrólise da xilana, sendo que as principais incluem as endo-β-1,4-xilanases (xilanases) e β-xilosidases. Estas podem ser aplicadas na bioconversão de materiais lignocelulósicos em produtos de valor agregado, como xilo-oligossacarídeos (XOs). Os XOs são oligossacarídeos que apresentam atividade prebiótica, sendo obtidos preferencialmente por hidrólise enzimática. A produção de xilanases por leveduras merece destaque, pois são secretadas enzimas com alta atividade de endo-β-xilanases e baixa de βxilosidases, característica desejável para a produção de XOs. Técnicas de purificação podem ser aplicadas para separação destas enzimas, de forma a favorecer a produção de XOs pela atenuação da produção de xilose. Este trabalho teve por objetivo estabelecer um protocolo para purificação de xilanases de Aureobasidium pullulans, bem como caracterizar e aplicar o extrato enzimático purificado na produção de XOs. Os cultivos para produção da enzima foram realizados em frascos Erlenmeyer aletados com 147 mL de meio estéril (pH 7.0) contendo (g/L) farelo de arroz (61,9), extrato de levedura (1,5) e (NH4)2SO4 (3,6), além de 3 mL de inóculo. Os frascos foram mantidos sob agitação orbital (150 rpm) e a 28 °C por 72 h. As técnicas de purificação da enzima estudadas foram a precipitação com sulfato de amônio (NH4)2SO4 e etanol em diferentes concentrações, em um único estágio e de forma fracionada (dois ou mais estágios). A enzima purificada foi caracterizada em termos do pH e temperatura ótimo, efeito de íons metálicos na atividade, parâmetros cinéticos, estabilidade térmica e em relação ao pH. A produção de XOs foi realizada a 45 °C, 3 % (m/v) de xilana de faia, pH 4,5, relação enzima:substrato 200 U/g, 180 rpm, por 24 h. Nestas condições de hidrólise foi avaliado o efeito de íons Ca2+ . A purificação da xilanase por precipitação fracionada (0-20/20-60 %) com (NH4)2SO4 foi mais eficiente, com fator de purificação (FP) 10,27 vezes e recuperação da atividade enzimática de 48,6 % que a precipitação fracionada com etanol (FP = 5,54 e recuperação da atividade enzimática de 43,01 %). A xilanase purificada exibiu temperatura e pH ótimos de 50 °C e 4,5, respectivamente. A constante de Michaelis-Menten para a enzima purificada foi de 74,9 mg/mL. A adição dos sais CaCl2, ZnCl2 e FeCl3 no meio reacional promoveu o aumento da atividade, sendo que o Ca2+ (10 mmol/L) destacou-se entre os demais pois aumentou a atividade da xilanase em 44 %. A xilanase purificada com sal apresentou maior estabilidade térmica a 45 °C e pH 4,5 com meia-vida (t1/2) de 169 h. Nestas condições e na presença de íons Ca2+ (10 mmol/L) a enzima foi ainda mais estável (t1/2= 231 h). Nas reações de hidrólise os teores de XOs totais (6,7 mg/mL) e a conversão da xilana em XOs (22,3 %) não apresentaram diferenças significativas (p>0,05) entre 2 e 24 h de processo. Os hidrolisados apresentaram composição majoritária de xilobiose, xilotriose e xilose. A adição de íons Ca2+ não contribuiu para o aumento do conteúdo de XOs totais nem para maior conversão de xilana em XOs, porém o hidrolisado apresentou menor conteúdo de xilose e maior de xilobiose em 24 h.
Xylanolytic enzymes are involved in xylan hydrolysis, the main ones being endo-β-1,4- xylanases (xylanases) and β-xylosidases. They can be applied to bioconvert lignocellulosic materials into value-added products such as xylooligosaccharides (XO). XOs are oligosaccharides with prebiotic activity, preferably obtained by enzymatic hydrolysis. The production of xylanases by yeasts is noteworthy, as enzymes with high endo-β-xylanase activity and low β-xylosidases activity are secreted, which is a desirable characteristic to produce XOs. Purification techniques can be applied to separate these enzymes, favoring the production of XOs by attenuating the xylose production. This study aimed to establish a protocol for the purification of xylanases from Aureobasidium pullulans, as well as to characterize and apply the purified enzyme into XOS production. Enzyme production was carried out in Erlenmeyer flasks (500 mL) with 147 mL of sterile medium (pH 7.0) containing rice bran 61.9 g/L. All cultivations occurred under orbital shaking (150 rpm) at 28 °C for 72 h. The enzyme purification techniques studied were ammonium sulfate (NH4)2SO4 and ethanol precipitation at different concentrations, in a direct and fractioned (two or more steps) ways. The purified xylanase was characterized in terms of optimum pH and temperature, kinetic parameters, effects of metal ions, thermal stability and in relation to pH. XOS were produced by enzymatic hydrolysis of beech xylan using purified xylanase in an incubator with temperature control (45 °C) and orbital shaking (180 rpm) 3% (w/v) of beech xylan, enzyme:subtrate rario (200 U/g) and pH 4.5 for 24 h. Under these hydrolysis conditions, the effect of the Ca2+ ion was evaluated. Purification of xylanase by fractional precipitation (0-20 / 20-60 %) with (NH4)2SO4 was more efficient (purification factor (PF) of 10.27 times and a recovery of enzyme activity of 48.6 %) than with ethanol fractional precipitation (PF = 5.54 times and a recovery of enzyme activity of 43.01%). The purified xylanase exhibited optimum temperature and pH of 50 °C and 4.5, respectively. The Michaelis-Menten constant for the purified enzyme was 74.9 mg/mL. The addition of salts such as CaCl2, ZnCl2 and FeCl3 in the reaction medium increased the xylanase activity. The Ca2+ ion (10 mmol/L) stood out among the other ions due to an increase in enzymatic activity by 44 %. The purified xylanase by (NH4)2SO4 showed greater thermal stability (t1/2 = 169 h) at 45 °C and pH 4.5. Under these conditions and in the presence of Ca2+ ions the enzyme was even more stable (t1 /2 = 231 h). In the studied temperature range (45 - 55 °C) it was found that xylanase is more stable at pH 4.5. In hydrolysis reactions for total XOs contents (6.7 mg/mL) and the conversion of xylan to XOs (22.3 %) between 2 and 24 h were statistically equal. The hydrolysates showed the majority composition of xylobiose, xylotriosis and xylose. The addition of Ca2+ ions did not contribute to an increase in the total XOs content or to a greater conversion of xylan into XOs. However, the hydrolysate showed lower content of xylose and higher content of xylobiose in 24 h.
Xylanolytic enzymes are involved in xylan hydrolysis, the main ones being endo-β-1,4- xylanases (xylanases) and β-xylosidases. They can be applied to bioconvert lignocellulosic materials into value-added products such as xylooligosaccharides (XO). XOs are oligosaccharides with prebiotic activity, preferably obtained by enzymatic hydrolysis. The production of xylanases by yeasts is noteworthy, as enzymes with high endo-β-xylanase activity and low β-xylosidases activity are secreted, which is a desirable characteristic to produce XOs. Purification techniques can be applied to separate these enzymes, favoring the production of XOs by attenuating the xylose production. This study aimed to establish a protocol for the purification of xylanases from Aureobasidium pullulans, as well as to characterize and apply the purified enzyme into XOS production. Enzyme production was carried out in Erlenmeyer flasks (500 mL) with 147 mL of sterile medium (pH 7.0) containing rice bran 61.9 g/L. All cultivations occurred under orbital shaking (150 rpm) at 28 °C for 72 h. The enzyme purification techniques studied were ammonium sulfate (NH4)2SO4 and ethanol precipitation at different concentrations, in a direct and fractioned (two or more steps) ways. The purified xylanase was characterized in terms of optimum pH and temperature, kinetic parameters, effects of metal ions, thermal stability and in relation to pH. XOS were produced by enzymatic hydrolysis of beech xylan using purified xylanase in an incubator with temperature control (45 °C) and orbital shaking (180 rpm) 3% (w/v) of beech xylan, enzyme:subtrate rario (200 U/g) and pH 4.5 for 24 h. Under these hydrolysis conditions, the effect of the Ca2+ ion was evaluated. Purification of xylanase by fractional precipitation (0-20 / 20-60 %) with (NH4)2SO4 was more efficient (purification factor (PF) of 10.27 times and a recovery of enzyme activity of 48.6 %) than with ethanol fractional precipitation (PF = 5.54 times and a recovery of enzyme activity of 43.01%). The purified xylanase exhibited optimum temperature and pH of 50 °C and 4.5, respectively. The Michaelis-Menten constant for the purified enzyme was 74.9 mg/mL. The addition of salts such as CaCl2, ZnCl2 and FeCl3 in the reaction medium increased the xylanase activity. The Ca2+ ion (10 mmol/L) stood out among the other ions due to an increase in enzymatic activity by 44 %. The purified xylanase by (NH4)2SO4 showed greater thermal stability (t1/2 = 169 h) at 45 °C and pH 4.5. Under these conditions and in the presence of Ca2+ ions the enzyme was even more stable (t1 /2 = 231 h). In the studied temperature range (45 - 55 °C) it was found that xylanase is more stable at pH 4.5. In hydrolysis reactions for total XOs contents (6.7 mg/mL) and the conversion of xylan to XOs (22.3 %) between 2 and 24 h were statistically equal. The hydrolysates showed the majority composition of xylobiose, xylotriosis and xylose. The addition of Ca2+ ions did not contribute to an increase in the total XOs content or to a greater conversion of xylan into XOs. However, the hydrolysate showed lower content of xylose and higher content of xylobiose in 24 h.
Descrição
Dissertação (Mestrado)
Palavras-chave
Enzimas xilanolíticas, Precipitação, Hidrólise enzimática, Oligossacarídeos, Levedura, Caracterização enzimática, Xylanolytic enzymes, Precipitation, Enzymatic hydrolysis, Oligosaccharides, Yeast, Enzyme characterization
Citação
CORRÊA JUNIOR, Luiz Cláudio Simões. Purificação de xilanases de Aureobasidium pullulans CCT 1261 e sua aplicação na produção de xilo-oligossacarídeos. 2021. 81 f. Dissertação (Mestrado) - Programa de Pós-Graduação em Engenharia e Ciência de Alimentos, Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande, 2021.
