dc.contributor.advisor |
Morais, Michele Greque de |
|
dc.contributor.author |
Kuntzler, Suelen Goettems |
|
dc.date.accessioned |
2020-05-27T17:48:19Z |
|
dc.date.available |
2020-05-27T17:48:19Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
KUNTZLER, Suelen Goettems . Nanofibras antimicrobianas para aplicação em alimentos. 2017. 148f. Dissertação (Mestrado em Engenharia e Ciência de Alimentos) Programa de Pós-Graduação em Engenharia e Ciência de Alimentos, Universidade Federal do Rio Grande, Rio Grande, 2017. |
pt_BR |
dc.identifier.uri |
http://repositorio.furg.br/handle/1/8750 |
|
dc.description.abstract |
As microalgas como a Spirulina sp. LEB 18 apresentam compostos biologicamente ativos como os compostos fenólicos que possuem atividade antifúngica e antibacteriana. O poli(hidroxibutirato) (PHB) é um biopolímero extraído da microalga Spirulina sp. LEB 18 que apresenta características como biodegradabilidade e propriedades mecânicas semelhantes aos plásticos convencionais, podendo ser alternativa aos materiais termoplásticos de origem petroquímica. Além disso, os polímeros quitosana e poli (óxido de etileno) (PEO) também apresentam importantes características como biodegradabilidade, biocompatibilidade com células e tecidos e propriedade antimicrobiana, os quais podem ser aplicados na produção de embalagens de alimentos. As nanofibras poliméricas produzidas por electrospinning são nanomateriais que em função do polímero utilizado apresentam elevada área superficial em relação ao volume, alta porosidade que permite a incorporação de compostos e propriedades mecânicas semelhantes aos filmes. O objetivo do trabalho foi desenvolver nanofibras poliméricas contendo compostos fenólicos obtidos da biomassa da microalga Spirulina sp. LEB 18 com potencial propriedade antibacteriana. Na primeira etapa deste trabalho foi realizada a extração dos compostos fenólicos e a atividade antimicrobiana do extrato foi testada através dos métodos de difusão com discos e macrodiluição. Os dois métodos foram realizados com as bactérias Escherichia coli ATCC 25972 e Staphylococcus aureus ATCC 25923. Na outra etapa, a biomassa da microalga Spirulina sp. LEB 18 foi utilizada para extração do biopolímero PHB, o qual foi solubilizado em clorofórmio e a solução polimérica foi testada no electrospinning para produção de nanofibras. Os polímeros quitosana e PEO também foram utilizados para o desenvolvimento de nanofibras. Após, os compostos fenólicos foram incorporados às nanofibras, as quais foram conduzidas às análises mecânicas, termogravimétricas, de molhabilidade, físico-químicas, morfológicas e microbiológicas. Dessa forma, os compostos fenólicos presentes na microalga e identificados por cromatografia foram os ácidos gálico e cafeico capazes de formar halos de inibição de 11,0 ± 0,1 e 15,7 ± 0,6 mm com a concentração mínima inibitória de 200 e 500 µg mL-1 para os micro-organismos Staphylococcus aureus ATCC 25923 e Escherichia coli ATCC 25972, respectivamente. As nanofibras poliméricas contendo os compostos fenólicos apresentaram diâmetro médio de 810 ± 85 nm e 214 ± 37 nm para PHB e blenda de quitosana/PEO, respectivamente. A partir da análise do ângulo de contato foi possível determinar que as nanofibras de PHB e a blenda de quitosana/PEO ambas com os compostos fenólicos apresentam caráter hidrofóbico e hidrofílico, respectivamente. As propriedades térmicas confirmaram a incorporação dos compostos e possibilitaram a utilização das nanofibras como embalagens de alimentos por apresentarem temperatura de máxima degradação de 287,0 e 323 °C, para nanofibras de PHB e blenda de quitosana/PEO, respectivamente. O espectro FTIR confirmou a incorporação dos compostos fenólicos nas nanofibras e a análise da atividade biológica determinou que as nanofibras de PHB e blenda de quitosana/PEO contendo os compostos fenólicos apresentaram halos de inibição de 7,5 ± 0,4 e 6,4 ± 1,1 mm para o Staphylococcus aureus ATCC 25923. Esta alternativa nanobiotecnológica de caráter inovador contribui para à ciência pois as nanofibras quando aplicadas em alimentos podem aumentar as propriedades mecânicas e térmicas adequando-as ao uso como embalagens. Além disso, a adição de compostos fenólicos com a atividade antibacteriana auxilia a embalagem a interagir com o alimento de forma desejável, protegendo os produtos alimentares do ambiente externo e proporcionando maior segurança alimentar para o consumidor. |
pt_BR |
dc.description.abstract |
Microalgae such as Spirulina sp. LEB 18 present biologically active compounds as THE phenolic compounds which have antifungal and antibacterial activity. Polyhydroxybutyrate (PHB) is a biopolymer extracted from Spirulina sp. LEB 18 with characteristics such as biodegradability and mechanical properties similar to conventional plastics, and can be an alternative to thermoplastic materials petrochemical origin. Besides that, chitosan and polyethylene oxide (PEO) polymers also have important characteristics as biodegradability, cell and tissue biocompatibility, antimicrobial property, being an interesting choice for applications in food packaging. Polymeric nanofibers produced by electrospinning are nanomaterials that due to the polymer used have a high surface area in relation to volume, high porosity that allows the incorporation of compounds and mechanical properties similar to the films. The aim this work was to develop polymeric nanofibers containing phenolic compounds obtained from Spirulina sp. LEB 18 biomass with potential antibacterial property. In the first stage of this work it was performed the phenolic compounds extraction from biomass and the extract antimicrobial activity it was tested by disc diffusion and macrodilution methods. Both methods were conducted with bacteria Escherichia coli ATCC 25972 and Staphylococcus aureus ATCC 25923. In another step, Spirulina sp. LEB 18 biomass was used for the extraction PHB biopolymer, which was solubilized in chloroform and polymer solution was tested in the electrospinning to produce nanofiber. The chitosan and PEO polymers were also used for nanofibers development. After, the phenolic compounds was incorporated into nanofibers, which were conducted to mechanical analysis, thermogravimetric, wettability, physical-chemical, morphological and microbiological. Thus, the phenolic compounds present in microalgae and identified by chromatography were gallic and caffeic acids capable of growth inhibition zones 11.0 ± 0,1 and 15.7 ± 0.6 mm with minimum inhibitory concentration of 200 and 500 µg mL-1 for the Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25972 microorganisms, respectively. Polymeric nanofibers containing phenolic compounds had an average diameter of 810 ± 85 nm and 214 ± 37 nm for PHB and chitosan/PEO blends, respectively. From the contact angle analysis it was possible to determine that PHB and chitosan/PEO blends nanofibers both with the phenolic compounds have hydrophobic and hydrophilic character, respectively. Thermal properties confirmed the incorporation of the compounds and allowed the application in the nanofibers as food packaging because they presented a maximum degradation temperature of 287.0 °C and 323 °C for PHB and chitosan/PEO blends, respectively. The FTIR spectrum confirmed the incorporation of the phenolic compounds in the nanofibers and the biological activity analysis determined that PHB and chitosan/PEO blends nanofibers containing the phenolic compounds presented inhibition zones of 7.5 ± 0.4 mm and 6.4 ± 1.1 for Staphylococcus aureus ATCC 25923. This innovative nanobiotechnological alternative contributes to science because nanofibers when applied in food can increase mechanical and thermal properties suiting them for use as packaging. Moreover, phenolic compounds addition with antimicrobial activity helps the packaging to interact with the food in a desirable manner, protecting food products from the external environment and providing greater food safety for the consumer. |
pt_BR |
dc.language.iso |
por |
pt_BR |
dc.rights |
open access |
pt_BR |
dc.subject |
Engenharia de alimentos |
pt_BR |
dc.subject |
Biopolímeros |
pt_BR |
dc.subject |
Compostos fenólicos |
pt_BR |
dc.subject |
Electrospinning |
pt_BR |
dc.subject |
Spirulina |
pt_BR |
dc.subject |
Nanofibras |
pt_BR |
dc.subject |
Food Engineering |
pt_BR |
dc.subject |
Biopolymer |
pt_BR |
dc.subject |
Phenolic compounds |
pt_BR |
dc.subject |
Electrospinning |
pt_BR |
dc.subject |
Nanofibers |
pt_BR |
dc.title |
Nanofibras antimicrobianas para aplicação em alimentos |
pt_BR |
dc.type |
masterThesis |
pt_BR |