Simulação numérica e design construtal aplicados à flambagem biaxial elasto-plástica de placas perfuradas
Resumo
A engenharia estrutural está em constante evolução e a cada dia surgem novas necessidades para serem supridas. A placa fina é um dos elementos mais utilizados para a concepção de estruturas, seja ela diretamente ligada à resistência estrutural ou apenas como complemento da estrutura. Estes elementos podem ser visualizados em projetos navais, aeroespaciais, de plataformas offshore, do setor automotivo e da construção civil. As placas podem estar submetidas a carregamentos compressivos no seu plano, o que as torna propícias a incorrer em flambagem, um fenômeno de instabilidade estrutural que provoca deslocamentos para fora do plano da placa. Sabese que a flambagem elástica não determina a falha de um elemento de placa, uma vez que é possível incrementar o carregamento externo além da carga crítica até que seja atingida a tensão última da flambagem elasto-plástica. Por vezes placas finas precisam apresentar perfurações com o objetivo de alívio de peso, montagem, dentre outros. Portanto, é importante que se tenha o conhecimento de como estas estruturas são afetadas pela presença de furos. Este trabalho analisa a flambagem elastoplástica de placas finas, quadradas e retangulares, com furos elípticos centrados, sob solicitação compressiva e biaxial. Para variar as geometrias do furo foi utilizada a razão entre os volumes do furo e da placa, chamada de fração volumétrica. Ainda, a aplicação do furo foi feita com diferentes ângulos de inclinação em relação à horizontal. Neste trabalho o Design Construtal, método já bastante explorado na área de transferência de calor e massa, teve provada a sua eficácia quanto à aplicação em problemas de engenharia estrutural. Associado ao Método dos Elementos Finitos e à técnica da Busca Exaustiva, obteve-se as geometrias ótimas que conduzem aos melhores comportamentos mecânicos das placas. Três razões de aspecto da placa foram analisadas: b/a = 1; 0,5 e 0,25, onde a e b são o comprimento e a largura da placa, respectivamente. A placa retangular sem perfuração com b/a = 0,25 é superior às demais pois a placa quadrada apresentou uma deflexão 229,4% maior, para a mesma tensão última. Quanto às placas perfuradas, notou-se que para as placas quadradas o ângulo de inclinação do furo não afeta os resultados das geometrias otimizadas, pois todos os ótimos foram obtidos para o furo circular. Para as placas retangulares, b/a = 0,5; conforme o furo aumenta, a geometria ótima assume um formato alongado no eixo X, enquanto que para b/a = 0,25 as geometrias ótimas são mais alongadas na direção Y. A perfuração causa a redução da resistência mecânica da placa, tornando-se mais significativa conforme o furo aumenta, enquanto a variação geométrica do furo pode aumentar em até 175,2% o comportamento mecânico da placa.
Structural engineering is constantly evolving and new requirements are arising every day. A thin plate is one of the most used elements in designing of structures, whether directly linked to the structural strength or simply as complement of structure. These elements can be seen in naval, aerospace, offshore platforms, automotive and civil construction designs. Plates can be subjected to compressive in-plane loadings, making them prone to buckling, a structural instability phenomenon that causes out-of-plane displacements. It is known that elastic buckling does not determine the failure of a plate element since it is possible to increase the external loading until it reaches the ultimate stress of elasto-plastic buckling. Sometimes thin plates need to have perforations for the purpose of weight reduction, assembly, among others. Thus, it is important to know how these structures are affected by the presence of holes. This study analyses the elasto-plastic buckling of thin, square and rectangular plates, with centered elliptical holes, under equal biaxial compressive loads. The geometries of holes were varied using the ratio between the hole and the plate volumes, called volume fraction. In addition, the hole was applied with different angles in relation to the horizontal axis. Constructal Design, a method that has already been extensively explored in the area of heat and mass transfer, has been proven to be effective in its application to structural engineering problems. With the application of this method associated with the Finite Element Method and the Exhaustive Search technique, the optimal geometries that conduct to the best mechanical behavior of the plates were obtained. Three aspect ratios of the plate were analyzed: b/a = 1; 0.5 and 0.25, where a e b are the length and the width of plate, respectively. The rectangular plate without perforation, which conducted to the best mechanical behavior, was b/a = 0.25, because it was possible to obtain the same ultimate stress of the square plate, however, the deflection of the square plate is 229.4% higher. Regarding perforated plates, it was noted that for the square plates the inclination angle of the hole does not affect the results of the optimized geometries since all the optimum ones were obtained for the circular hole. For rectangular plates b/a = 0.5, as the hole increases, the optimum geometry takes on a more elongated shape on the X-axis, while for b/a = 0.25, the optimum geometries are more elongated in the Y direction. Perforation causes a reduction in the mechanical strength of the plate, becoming more significant as the hole increases, while the geometric variation of the hole can increase the mechanical behavior of the plate by up to 175.2%.
Structural engineering is constantly evolving and new requirements are arising every day. A thin plate is one of the most used elements in designing of structures, whether directly linked to the structural strength or simply as complement of structure. These elements can be seen in naval, aerospace, offshore platforms, automotive and civil construction designs. Plates can be subjected to compressive in-plane loadings, making them prone to buckling, a structural instability phenomenon that causes out-of-plane displacements. It is known that elastic buckling does not determine the failure of a plate element since it is possible to increase the external loading until it reaches the ultimate stress of elasto-plastic buckling. Sometimes thin plates need to have perforations for the purpose of weight reduction, assembly, among others. Thus, it is important to know how these structures are affected by the presence of holes. This study analyses the elasto-plastic buckling of thin, square and rectangular plates, with centered elliptical holes, under equal biaxial compressive loads. The geometries of holes were varied using the ratio between the hole and the plate volumes, called volume fraction. In addition, the hole was applied with different angles in relation to the horizontal axis. Constructal Design, a method that has already been extensively explored in the area of heat and mass transfer, has been proven to be effective in its application to structural engineering problems. With the application of this method associated with the Finite Element Method and the Exhaustive Search technique, the optimal geometries that conduct to the best mechanical behavior of the plates were obtained. Three aspect ratios of the plate were analyzed: b/a = 1; 0.5 and 0.25, where a e b are the length and the width of plate, respectively. The rectangular plate without perforation, which conducted to the best mechanical behavior, was b/a = 0.25, because it was possible to obtain the same ultimate stress of the square plate, however, the deflection of the square plate is 229.4% higher. Regarding perforated plates, it was noted that for the square plates the inclination angle of the hole does not affect the results of the optimized geometries since all the optimum ones were obtained for the circular hole. For rectangular plates b/a = 0.5, as the hole increases, the optimum geometry takes on a more elongated shape on the X-axis, while for b/a = 0.25, the optimum geometries are more elongated in the Y direction. Perforation causes a reduction in the mechanical strength of the plate, becoming more significant as the hole increases, while the geometric variation of the hole can increase the mechanical behavior of the plate by up to 175.2%.
Descrição
Tese (Doutorado)
Palavras-chave
Placas finas, Flambagem elasto-plástica, Design Construtal, Método dos Elementos Finitos, Thin plates, Elasto-plastic buckling, Constructal Design, Finite Element Method
Citação
SILVEIRA, Thiago da. Simulação numérica e design construtal aplicados à flambagem biaxial elasto-plástica de placas perfuradas. 2021. 151 f. Tese (doutorado) - Programa de Pós-Graduação em Modelagem Computacional, Instituto de Matemática, Estatística e Física, Universidade Federal do Rio Grande, Rio Grande, 2021.
